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Preface

These are notes used by the author on part of a course on Advanced Number Theory taught at
UB/UAB during Spring 2024. They evolved from a course on Modular Forms taught at the
University of Warwick during autumn of 2015, and are based on a variety of sources, mainly:

1. The books Diamond and Shurman [3] and Serre [4] listed in the bibliography.
2. Notes from a course taught by Peter Bruin in the spring term of 2014, which in turn are

based on
3. Notes from a course taught by David Loeffler in the autumn term of 2011;
4. Notes from a course taught by Scott Ahlgren (UIUC) in 2006.

Typeset with Quarto. To learn more about it, see https://quarto.org/docs/books.

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain
a copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required by
applicable law or agreed to in writing, software distributed under the License is distributed on
an “as is” basis, without warranties or conditions of any kind, either express or implied. See the
License for the specific language governing permissions and limitations under the License.
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1 Modular forms of level one

1.1 Two examples

Modular forms have been for a while a central object in number theory. They have connec-
tions to many research areas: arithmetic, combinatorics, analysis, geometry, representation
theory,…Since they appear essentially everywhere you look at, it is quite reasonable to wish to
understand them.

Here is a not too serious reason: have you ever tried to calculate 𝑒𝜋
√

163? It turns out that it
is

𝑒𝜋
√

163 = 262537412640768743.999999999999250072597 …

which seems too close to an integer to be a coincidence. That is, until you learn about modular
forms: it turns out that this number is related to a value of a modular funtion (the 𝑗-function),
which is known to be an integer.

In this introduction I give two more examples that hopefully convince the reader of the
importance of modular forms in number theory. You can find many more examples in [1,
Chapter 1].

1.1.1 Partitions and Ramanujan’s 𝜏-function

For each 𝑛 ≥ 0, define the partition function 𝑝(𝑛) as

𝑝(𝑛) = #{ways of representing 𝑛 as a sum of natural numbers }.

As a convention, 𝑝(0) = 1. Also, note that:

𝑝(1) = 1
𝑝(2) = 2 = #{1 + 1, 2}
𝑝(3) = 3 = #{1 + 1 + 1, 1 + 2, 3}
𝑝(4) = 5 = #{1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, 4}
𝑝(5) = 7 = #{1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 2, 1 + 1 + 3, 1 + 4, 1 + 2 + 2, 2 + 3, 5}

…
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In order to package all these numbers we may consider the following formal powers series:

𝑃(𝑞) =
∞

∑
𝑛=0

𝑝(𝑛)𝑞𝑛,

where we think of 𝑞 as a formal variable.

Lemma 1.1. There is an infinite product decomposition

𝑃(𝑞) =
∞
∏
𝑚=1

1
1 − 𝑞𝑚 .

Proof. We need to look at the right-hand side. Each of the factors can be written as ∑∞
𝑘=0 𝑞𝑘𝑚,

so the right-hand side looks like
∞
∏
𝑚=1

∞
∑
𝑘=0

𝑞𝑘𝑚.

Now we collect the terms contributing to 𝑞𝑛, for a fixed 𝑛. These come from taking 1 from all
but finitely many of the infinite sums, and then collecting 𝑞𝑘1𝑚1 , 𝑞𝑘2𝑚2 , …, 𝑞𝑘𝑟𝑚𝑟 from 𝑟 other
factors. This is subject to the condition

𝑘1𝑚1 + 𝑘2𝑚2 + ⋯ + 𝑘𝑟𝑚𝑟 = 𝑛,

and note that the 𝑚𝑖 are all different because they are taken from different factors. There are
exactly 𝑝(𝑛) such choices, as we wanted to show.

In view of the previous lemma, a convenient way to study the partition function is through
another very popular function, defined by the following infinite product:

Δ(𝑞) = 𝑞
∞
∏
𝑛=1

(1 − 𝑞𝑛)24.

Note that we have:

Δ(𝑞) = 𝑞
∞
∏
𝑛=1

(1 − 𝑞𝑛)24 = 𝑞 ∏(1 − 𝑞𝑛)25

∏ 1 − 𝑞𝑛 = (
∞
∏
𝑛=1

(1 − 𝑞𝑛)25)
∞

∑
𝑛=0

𝑝(𝑛)𝑞𝑛+1.

We define the Ramanujan’s tau function as the Fourier coefficients of Δ. That is,

Δ(𝑞) =
∞

∑
𝑛=1

𝜏(𝑛)𝑞𝑛.

Later in this course you will be able to prove the following striking result.
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Theorem 1.1. For each 𝑛 ≥ 1, we have:

𝜏(𝑛) ≡ ∑
𝑑∣𝑛

𝑑11 (mod 691).

Moreover, the partition function satisfies the following congruences:

𝑝(5𝑛 + 4) ≡ 0 (mod 5), ∀𝑛,

𝑝(7𝑛 + 5) ≡ 0 (mod 7), ∀𝑛,

𝑝(11𝑛 + 6) ≡ 0 (mod 11), ∀𝑛.

1.1.2 A modular form of level 11 that knows about congruences

Consider another modular form:

𝑓(𝑧) = 𝑞
∞
∏
𝑛=1

(1 − 𝑞𝑛)2(1 − 𝑞11𝑛)2 = 𝑞 − 2𝑞2 − 𝑞3 + 2𝑞4 + 𝑞5 + 2𝑞6 + ⋯ =
∞

∑
𝑛=1

𝑎(𝑛)𝑞𝑛.

Theorem 1.2.

1. 𝑎(𝑛𝑚) = 𝑎(𝑛)𝑎(𝑚) whenever (𝑛, 𝑚) = 1.

2. |𝑎(𝑝)| ≤ 2√𝑝 for all prime 𝑝.

Consider the equation:
𝐸∶ 𝑌 2 + 𝑌 = 𝑋3 − 𝑋2 − 10𝑋 − 20,

and let 𝑁(𝑝) be the number of solutions in 𝔽𝑝. Heuristically we should think that 𝑁(𝑝) ≃ 𝑝.

Theorem 1.3. |𝑝 − 𝑁(𝑝)| ≤ 2√𝑝.

The theory of modular forms allows to prove that the 𝐸 and 𝑓 “correspond” to each other:

Theorem 1.4. For all primes 𝑝, we have 𝑎(𝑝) = 𝑝 − 𝑁(𝑝).

This allows us to easily calculate (from 𝑓) what is 𝑁(𝑝) for all 𝑝. We say in this case that 𝐸
“is modular”. In [3] you can learn how to attach an elliptic curve to a modular form (this is
called the “Eichler–Shimura” construction). It is much harder to reverse this process, and this
is what A.Wiles did in order to prove Fermat’s Last Theorem.
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1.2 The upper half-plane

This section introduces the seemingly innocuous upper half-plane ℍ.

Definition 1.1. The upper half-plane ℍ is the set of complex numbers with positive imaginary
part:

ℍ = {𝑧 = 𝑥 + 𝑖𝑦 | ℑ(𝑧) > 0}.

The upper half-plane appears in the classification of Riemann surfaces: there are only three of
them which are simply connected which are the complex plane, the complex sphere, and ℍ.

The general linear group GL2(ℝ) consists of all 2 × 2 invertible matrices with entries in ℝ. It
contains the subgroup GL+

2 (ℝ) of matrices with positive determinant. The SL2(ℝ) ⊂ GL+
2 (ℝ)

consists of those matrices with determinant 1. For 𝛾 = ( 𝑎 𝑏
𝑐 𝑑 ) ∈ GL2(ℝ) and 𝑧 ∈ ℍ, define 𝛾𝑧

as:
𝛾𝑧 = (𝑎 𝑏

𝑐 𝑑) 𝑧 = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

. (1.1)

Lemma 1.2. Let 𝛾 = ( 𝑎 𝑏
𝑐 𝑑 ) ∈ GL2(ℝ). Then:

ℑ(𝛾𝜏) = det(𝛾)
|𝑐𝜏 + 𝑑|2

ℑ(𝜏), 𝛾 = (𝑎 𝑏
𝑐 𝑑) .

Proof. One just needs to compute

ℑ(𝛾𝜏) = ℑ(𝑎𝜏 + 𝑏
𝑐𝜏 + 𝑑

) = ℑ ((𝑎𝜏 + 𝑏)(𝑐 ̄𝜏 + 𝑑)
|𝑐𝜏 + 𝑑|2

)

= ℑ(𝑎𝑐|𝜏|2 + 𝑎𝑑𝜏 + 𝑏𝑐 ̄𝜏 + 𝑏𝑑)
|𝑐𝜏 + 𝑑|2

= 𝑎𝑑ℑ(𝜏) − 𝑏𝑐ℑ(𝜏)
|𝑐𝜏 + 𝑑|2

.

Corollary 1.1. GL+
2 (ℝ) acts on the left on ℍ.

Note that the determinant gives a decomposition

GL+
2 (ℝ) = SL2(ℝ) × ℝ,

and since the scalar matrices (those of the form ( 𝜆 0
0 𝜆 )) act trivially on ℍ, from now on we will

restrict our attention to SL2(ℝ). In fact, since the scalar matrix ( −1 0
0 −1 ) belongs to SL2(ℝ),

the above action on ℍ factors through PSL2(ℝ) = SL2(ℝ)/{±1}, which is called the .

From this action we can deduce a right action on functions on ℍ, by precomposing:

(𝑓 ⋅ 𝛾)(𝑧) = 𝑓(𝛾𝑧).

However, we will need slightly more general actions on functions, but before we introduce a
piece of notation that will later prove useful.
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Definition 1.2. The 𝑗-function is the function

𝑗 ∶ GL+
2 (ℝ) × ℍ ⟶ ℂ

given by:

𝑗(𝛾, 𝑧) = 𝑐𝑧 + 𝑑, 𝛾 = (𝑎 𝑏
𝑐 𝑑) .

The following lemma gives a very interesting property of the automorphy factor.

Lemma 1.3. For every 𝛾1, 𝛾2 in GL+
2 (ℝ) and for every 𝑧 ∈ ℍ we have:

𝑗(𝛾1𝛾2, 𝑧) = 𝑗(𝛾1, 𝛾2𝑧)𝑗(𝛾2, 𝑧).

Finally, we define an action of GL+
2 (ℝ) on functions 𝑓∶ ℍ ⟶ ℂ, for each 𝑘 ∈ ℤ.

Definition 1.3. The slash operator is defined as

(𝑓|𝑘𝛾)(𝑧) = (det 𝛾)𝑘−1𝑗(𝛾, 𝑧)−𝑘𝑓(𝛾𝑧).

The cocycle property and the multiplicativity of the determinant implies that if 𝑓 is a function,
then:

𝑓|𝑘(𝛾1𝛾2) = (𝑓|𝑘𝛾1)|𝑘𝛾2, ∀𝛾1, 𝛾2 ∈ GL+
2 (ℝ).

That is, for each 𝑘 the weight-𝑘 slash operator defines an action of GL+
2 (ℝ) on functions on the

upper-half plane.

1.2.1 Group-theoretic description of ℍ

Recall that SL2(ℝ) acts on ℍ. If 𝜏 = 𝑥 + 𝑖𝑦 ∈ ℍ, then define

𝑠𝜏 = (𝑦1/2 𝑥𝑦−1/2

0 𝑦−1/2 ) .

Note that 𝑠𝜏𝑖 = 𝜏, and therefore SL2(ℝ) acts transitively on ℍ.

Lemma 1.4. The stabilizer in SL2(ℝ) of 𝑖 is the compact subgroup of SL2(ℝ):

SO2(ℝ) = {(cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ) | 𝜃 ∈ [0, 2𝜋]}
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Proof. Let 𝑔 = ( 𝑎 𝑏
𝑐 𝑑 ) ∈ SL2(ℝ) stabilize 𝑖. That means that:

𝑎𝑖 + 𝑏
𝑐𝑖 + 𝑑

= 𝑖,

or equivalently that
𝑎𝑖 + 𝑏 = −𝑐 + 𝑑𝑖.

Since the entries of 𝑔 are real, this means that 𝑎 = 𝑑 and 𝑏 = −𝑐. Therefore 𝑔 = ( 𝑎 𝑏
−𝑏 𝑎 ). Since

moreover det(𝑔) = 𝑎2 + 𝑏2 = 1, we deduce that 𝑔 ∈ SO2(ℝ).

The lemma gives a bijection:

ℍ ⟶ SL2(ℝ)/ SO2(ℝ), 𝜏 ↦ 𝑠𝜏 SO2(ℝ),

whose inverse maps 𝑔 SO2(ℝ) ↦ 𝑔 ⋅ 𝑖.

1.2.2 The quotient SL2(ℤ)\ℍ as a topological space

We end this section by showing that the quotient SL2(ℤ)\ℍ is a Hausdorff space.

Lemma 1.5. Let 𝑈1 and 𝑈2 be two open sets in ℍ. Then the set

𝑆 = {𝛾 ∈ SL2(ℤ) | 𝛾𝑈1 ∩ 𝑈2 ≠ ∅}

is finite.

Proof. First observe that the matrices 𝑠𝛾𝜏 and 𝛾𝑠𝜏 both send 𝑖 to 𝛾𝜏. By the identification
ℍ = SL2(ℝ)/ SO2(ℝ) we deduce that 𝛾𝑠𝜏 SO2(ℝ) = 𝑠𝛾𝜏 SO2(ℝ). Given two points 𝜏1 and 𝜏2
of ℍ, we have 𝛾𝜏1 = 𝜏2 if and only if 𝑠𝛾𝜏1

SO2(ℝ) = 𝑠𝜏2
SO2(ℝ). We have just seen that the

left hand side equals 𝛾𝑠𝜏1
SO2(ℝ). We deduce that 𝛾𝜏1 = 𝜏2 if and only if 𝛾 belongs to the

conjugate: 𝑠𝜏2
SO2(ℝ)𝑠−1

𝜏1
. Therefore the set 𝑆 is a subset of the set

{𝛾 ∈ SL2(ℤ) | 𝛾𝑈1 ∩ 𝑈2 ≠ ∅}

which in turn can be written as

SL2(ℤ) ∩ 𝑠𝑈2
SO2(ℝ)𝑠−1

𝑈1
.

Since SL2(ℤ) is discrete and the other term is compact, the intersection, and hence 𝑆, is
finite.

Proposition 1.1. The action of SL2(ℤ) on ℍ is proper discontinuous. That is, given any 𝜏1,
𝜏2 in ℍ, there are neighborhoods 𝑈1 and 𝑈2 such that for each 𝛾 ∈ SL2(ℤ) either
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1. 𝛾𝜏1 = 𝜏2, or

2. 𝛾𝑈1 ∩ 𝑈2 = ∅.

Proof. Let 𝑈1 and 𝑈2 be any two neighborhoods of 𝜏1 and 𝜏2, and let 𝛾 ∈ 𝑆. If 𝛾𝜏1 = 𝜏2 then
we do not need to do anything. Otherwise, if 𝛾𝑈1 ∩ 𝑈2 ≠ ∅ then we may replace 𝑈2 with 𝑉2
and 𝑈1 with 𝛾−1𝑉1 if 𝑉1 ∩ 𝑉2 = ∅, 𝜏2 ∈ 𝑉2 and 𝛾𝜏1 ∈ 𝑉1:

γU1

U2

γτ1

τ2

V1

V2

Figure 1.1: Shrinking the neighborhoods

Since the set of 𝛾 such that these intersections are nonempty is finite, this process terminates
after a finite number of steps and will leave us with the right neighborhoods.

Corollary 1.2. The quotient 𝑌 (1) = SL2(ℤ)\ℍ is Hausdorff.

Proof. Pick 𝜋(𝜏1) ≠ 𝜋(𝜏2) in 𝑌 (1), and let 𝑈1 and 𝑈2 be neighborhoods as in the Proposition.
For every 𝛾 ∈ SL2(ℤ) we have 𝛾𝜏1 ≠ 𝜏2 by the choice of 𝜏1 and 𝜏2. Therefore for every
𝛾 ∈ SL2(ℤ) we have 𝛾𝑈1 ∩ 𝑈2 = ∅. Therefore 𝜋(𝑈1) ∩ 𝜋(𝑈2) = ∅. It remains to show that
𝜋(𝑈𝑖) is an open set. Indeed, if 𝑈 ⊆ ℍ is an open set, then

𝜋−1(𝜋(𝑈)) = ∪𝛾∈SL2(ℤ)𝛾𝑈

is a union of open sets. Therefore it is open. We have showed that 𝜋(𝑈) is open (because of
the quotient topology). Therefore each of the 𝜋(𝑈𝑖) is open, as we wanted to show.
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1.3 Basic definitions of modular forms

Let SL2(ℤ) ⊂ SL2(ℝ) be the subgroup of matrices with entries in ℤ (and determinant 1), which
of course still acts on functions as we have seen.

Definition 1.4. A holomorphic function 𝑓∶ ℍ ⟶ ℂ is called weakly modular of weight 𝑘 ∈ ℤ
for SL2(ℤ) if 𝑓|𝑘𝛾 = 𝑓 for all 𝛾 ∈ SL2(ℤ). Explicitly:

𝑓(𝛾 ⋅ 𝑧) = 𝑗(𝛾, 𝑧)𝑘𝑓(𝑧), ∀𝛾 ∈ SL2(ℤ). (1.2)

Note that since −𝐼 ∈ SL2(ℤ), then there are no non-zero weakly-modular functions of odd
weight:

𝑓(𝑧) = (−1)𝑘𝑓(𝑧) ⟹ 𝑓 = 0.

We will need an extra analytic property to define modular forms for SL2(ℤ). For now, note
that:

𝑑(𝛾 ⋅ 𝑧)
𝑑𝑧

= 𝑗(𝛾, 𝑧)−2,

so we can rewrite the weakly-modular property by asking that the differential 𝑓(𝑧)(𝑑𝑧)𝑘/2 is
invariant under SL2(ℤ). It also shows that if Equation 1.2 holds for 𝛾1 and 𝛾2, then it also
holds for 𝛾1𝛾2.

We will see later (see Corollary 1.3) that SL2(ℤ) is generated by the matrices 𝑇 = ( 1 1
0 1 ) and

𝑆 = ( 0 −1
1 0 ). Together with the previous observation, this implies that for 𝑓 to be weakly-modular

it is enough to check Equation 1.2 for 𝑇 and 𝑆:

𝑓(𝑧 + 1) = 𝑓(𝑧), 𝑓(−1/𝑧) = 𝑧𝑘𝑓(𝑧).

The transformation property (rather, the fact that 𝑓(𝑧 + 1) = 𝑓(𝑧)) implies that 𝑓 has a Fourier
expansion. Another way to think about it is that there is a holomorphic map:

exp ∶ ℍ ⟶ {0 < |𝑞| < 1}, 𝑧 ↦ 𝑞 = 𝑒2𝜋𝑖𝑧.

If 𝑓 is holomorphic and 1-periodic, then we can define 𝑔(𝑞) = 𝑓(𝑧). That is, we may define:

𝑔(𝑞) = 𝑓 ( log 𝑞
2𝜋𝑖

) ,

where we may choose any branch of the logarithm because of the periodicity of 𝑓. The function
𝑔 is holomorphic on 𝐷′, and thus it has a Laurent expansion

𝑔(𝑞) =
∞

∑
𝑛=−∞

𝑎(𝑛)𝑞𝑛.

Therefore 𝑓 has an expansion

𝑓(𝑧) =
∞

∑
𝑛=−∞

𝑎(𝑛)𝑒2𝜋𝑖𝑛𝑧.

12



Definition 1.5. We say that 𝑓 is meromorphic at infinity (respectively holomorphic at infinity)
if 𝑓(𝑧) = ∑𝑛≥𝑛0

𝑎(𝑛)𝑞𝑛 (respectively if in addition 𝑛0 = 0).

Note that checking that 𝑓 is holomorphic at infinity is the same as checking that 𝑓(𝑧) is bounded
as 𝑧 approaches 𝑖∞. If 𝑓 is holomorphic at infinity, then the value of 𝑓 at infinity is defined to
be 𝑓(∞) = 𝑎(0).

Definition 1.6. We say that 𝑓 is cuspidal if 𝑛0 = 1. Equivalently, if 𝑓(∞) = 0.

Definition 1.7. Let 𝑘 ∈ ℤ and let 𝑓∶ ℍ ⟶ ℂ. We say that 𝑓 is a modular form of weight 𝑘
for SL2(ℤ) if:

1. 𝑓 is holomorphic,

2. 𝑓(𝛾𝑧) = (𝑐𝑧 + 𝑑)𝑘𝑓(𝑧) for all 𝛾 = ( 𝑎 𝑏
𝑐 𝑑 ) ∈ SL2(ℤ), and

3. 𝑓 is holomorphic at infinity.

A cusp form is a modular form which vanishes at infinity.

The space of modular forms of weight 𝑘 is written 𝑀𝑘 = 𝑀𝑘(SL2(ℤ)), and it contains the space
of cusp forms of weight 𝑘, which in turn is written 𝑆𝑘 = 𝑆𝑘(SL2(ℤ)).

Remark 1.1. If we replace “holomorphic” with “meromorphic” above, we obtain what can be
called an automorphic form. Other authors call them modular functions, but this name is used
in different contexts and we will avoid it.

Note that both 𝑀𝑘 and 𝑆𝑘 are ℂ-vector spaces. Also, multiplication of functions gives
𝑀 = ⨁𝑘∈ℤ 𝑀𝑘 the structure of a graded ring. That is, 𝑀𝑟𝑀𝑠 ⊆ 𝑀𝑟+𝑠. Finally, for all odd 𝑘
one has 𝑀𝑘 = {0}.

1.4 Eisenstein series

For 𝑘 ≥ 3, define
𝐺𝑘(𝑧) = ∑ ′

(𝑚,𝑛)∈ℤ2

(𝑚𝑧 + 𝑛)−𝑘.

Proposition 1.2. For all 𝑘 ≥ 3, the function 𝐺𝑘(𝑧) is a weight-𝑘 modular form, with
𝐺𝑘(∞) = 2𝜁(𝑘), where 𝜁 is Riemann’s zeta function.

In order to prove the above result, we will need to auxiliary lemmas.

13



Lemma 1.6. If 𝑘 ≥ 2, the series

∑
(𝑐,𝑑)≠(0,0)

max(𝑐, 𝑑)−𝑘

converges absolutely.

Proof. Consider the partial sum of the series in the box {|𝑐| ≤ 𝑁, |𝑑| ≤ 𝑁}. We can explicitly
compute this sum, which equals

𝑁
∑
𝑛=1

(2𝑛 + 1)𝑛−𝑘.

Evaluating this sum we obtain the exact value 𝜁(𝑘) + 2𝜁(𝑘 − 1).

Lemma 1.7. Given positive real numbers 𝐴 > 0 i 𝐵 > 0, consider the compact set

Ω = {𝑧 ∈ ℍ ∶ |ℜ(𝑧)| ≤ 𝐴, ℑ(𝑧) ≥ 𝐵}.

There exists a constant 𝐶 = 𝐶𝐴,𝐵 such that

|𝑧 + 𝛿| > 𝐿 max(1, |𝛿|), ∀𝛿 ∈ ℝ.

Proof. If |𝛿| < 1, then |𝑧 + 𝛿| ≥ 𝐵 = 𝐵 max(1, |𝛿|). If 1 ≤ |𝛿| ≤ 10𝐴, then if ℑ(𝑧) > 𝐴 we have

|𝑧 + 𝛿| > 𝐴 ≥ |𝛿|
10

,

and if 𝐵 ≤ ℑ𝑧 ≤ 𝐴 then the function
∣𝑧 + 𝛿

𝛿
∣

has an absolute minimum 𝑚 in the compact set 1 ≤ |𝛿| ≤ 10𝐴 i 𝐵 ≤ ℑ𝑧 ≤ 𝐴.

Finally, if |𝛿| > 10𝐴, then

|𝑧 + 𝛿| ≥ |𝛿| − |𝑧| > |𝛿| − 𝐴 > 9
10

|𝛿|.

of the proposition. First, we need to show the convergence of the series for all 𝑧. In order to
simplify notation, we will restrict the sum to the pairs in the first quadrant. Restricting further
the double sum to pairs in the box {0 ≤ 𝑐, 𝑑 ≤ 𝑁}, we have on one hand

𝑁
∑
𝑑=1

𝑑−𝑘 +
𝑁

∑
𝑐=1

𝑁
∑
𝑑=1

(𝑐𝑧 + 𝑑)−𝑘.
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The first summand is bounded by 𝜁(𝑘) and so we will ignore it. By restricting 𝑧 to the compact
Ω𝐴,𝐵 as above, the second summand can be rewritten as

𝑁
∑
𝑐=1

𝑁
∑
𝑑=1

𝑐−𝑘|𝑧 + 𝑑/𝑐|−𝑘 ≤
𝑁

∑
𝑐=1

𝑁
∑
𝑑=1

𝑐−𝑘𝐿𝑘 max(1, 𝑑−𝑘/𝑐−𝑘)

= 𝐿𝑘
𝑁

∑
𝑐=1

𝑁
∑
𝑑=1

max(𝑐, 𝑑)−𝑘.

By the first lemma, this series converges absolutely. We have already seen that it also converges
absolutely in compact sets that cover all of ℍ, and thus we deduce that it converges to a
holomorphic function on ℍ.

In order to compute 𝐺𝑘(∞), we take the limit as ℑ(𝑧) ⟶ ∞, which can be done while keeping
𝑧 ∈ 𝐷. In this case, thanks to the uniforme convergent of the series, we can take the term-wise
limit. All terms with 𝑐 ≠ 0 tend to zero, so we get

lim 𝐺𝑘(𝑧) = ∑
𝑛≠0

𝑛−𝑘 = 2𝜁(𝑘).

Proposition 1.3. For each 𝑘 ≥ 3 the holomorphic function 𝐺𝑘 is weakly modular.

Proof. Let 𝛾 = ( 𝑎 𝑏
𝑐 𝑑 ) be a matrix in SL2(ℤ). We compute

𝐺𝑘(𝛾𝑧) = ∑ ′

(𝑚,𝑛)
(𝑚𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
+ 𝑛)

−𝑘

= ∑ ′

(𝑚,𝑛)
(𝑐𝑧 + 𝑑)𝑘 (𝑚(𝑎𝑧 + 𝑏) + 𝑛(𝑐𝑧 + 𝑑))−𝑘

= (𝑐𝑧 + 𝑑)𝑘 ∑ ′

(𝑚,𝑛)
((𝑎𝑚 + 𝑐𝑛)𝑧 + (𝑏𝑚 + 𝑑𝑛))−𝑘 .

Note that the pair (𝑎𝑚 + 𝑐𝑛, 𝑏𝑚 + 𝑑𝑛) is the result of multiplying the row vector (𝑚, 𝑛) by the
matrix ( 𝑎 𝑏

𝑐 𝑑 ). Since ( 𝑎 𝑏
𝑐 𝑑 ) is invertible, the pair (𝑎𝑚 + 𝑐𝑛, 𝑏𝑚 + 𝑑𝑛) runs through all values

of ℤ2 as (𝑚, 𝑛) does. Therefore, by reordering the sum (which we can do thanks to absolute
convergence) we get:

𝐺𝑘(𝛾𝑧) = (𝑐𝑧 + 𝑑)𝑘 ∑ ′

(𝑚′,𝑛′)
(𝑚′𝑧 + 𝑛′)−𝑘 = (𝑐𝑧 + 𝑑)𝑘𝐺𝑘(𝑧),

as wanted.

We have already seen that 𝐺𝑘 is holomorphic at infinity, and in fact we know its value there.
The next task will be to compute its Fourier series. We start by introducing the Bernoulli
numbers, which appear in the Fourier series for 𝐺𝑘.
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Definition 1.8. The Bernoulli numbers are defined 1 by:

𝑥
𝑒𝑥 − 1

=
∞

∑
𝑘=0

𝐵𝑘
𝑥𝑘

𝑘!
= 1 − 1

2
𝑥 + 1

6
𝑥2

2
− 1

30
𝑥4

24
+ ⋯ . (1.3)

Recall the definition of Riemann’s zeta function

𝜁(𝑠) =
∞

∑
𝑛=1

1
𝑛𝑠 , ℜ(𝑠) > 1.

It has a simple pole of residue 1 at 𝑠 = 1, and extends to a meromorphic function on ℂ,
holomorphic on ℂ ∖ {1}. The Bernoulli numbers appear also naturally in the formulas:

𝜁(𝑘) =
∞

∑
𝑛=1

1
𝑛𝑘 = −(2𝜋𝑖)𝑘

2
𝐵𝑘
𝑘!

, ∀𝑘 ≥ 2, 𝜁(1 − 𝑛) = −𝐵𝑛
𝑛

, ∀𝑛 ≥ 1. (1.4)

An odd prime 𝑝 is called if 𝑝 does not divide the numerator of 𝐵2, 𝐵4,…𝐵𝑝−3. This is equivalent
to 𝑝 not dividing the class number of ℚ( 𝑝

√
1). Under this assumption, Fermat’s Last Theorem

was proved by Kummer around 1850, and probably by Fermat himself. Although Siegel
conjectured that about 60% of primes are regular, it is not know even whether there are
infinitely many of them.

We will derive the Fourier expansion of 𝐺𝑘 from that of the cotangent:

Lemma 1.8. The following identity of holomorphic functions holds.

1
𝑧

+
∞

∑
𝑑=1

( 1
𝑧 − 𝑑

+ 1
𝑧 + 𝑑

) = 𝜋 cot(𝜋𝑧) = 𝜋𝑖 − 2𝜋𝑖
∞

∑
𝑚=0

𝑞𝑚, 𝑞 = 𝑒2𝜋𝑖𝑧.

Proof. Consider Euler’s product formula for the sine function:

sin(𝜋𝑧) = 𝜋𝑧
∞
∏
𝑛=1

(1 − 𝑧2

𝑛2 ) .

Taking the logarithmic derivative of this equation yields

𝜋 cot(𝜋𝑧) = 1
𝑧

+
∞

∑
𝑑=1

2𝑧
𝑧2 − 𝑛2 = 1

𝑧
+

∞
∑
𝑑=1

( 1
𝑧 − 𝑑

+ 1
𝑧 + 𝑑

) .

On the other hand, we can use the expression of sin and cos in terms of the exponential function
to write:

𝜋 cot(𝜋𝑧) = 𝜋cos(𝜋𝑧)
sin(𝜋𝑧)

= 𝜋
𝑒𝑖𝜋𝑧+𝑒−𝑖𝜋𝑧

2
𝑒𝑖𝜋𝑧−𝑒−𝑖𝜋𝑧

2𝑖
= 𝜋𝑖𝑒𝑖𝜋𝑧 + 𝑒−𝑖𝜋𝑧

𝑒𝑖𝜋𝑧 − 𝑒−𝑖𝜋𝑧

= 𝜋𝑖 (1 − 2 𝑒−𝑖𝜋𝑧

𝑒−𝑖𝜋𝑧 − 𝑒𝑖𝜋𝑧 ) = 𝜋𝑖 (1 − 2 1
1 − 𝑒2𝜋𝑖𝑧 ) .

1These are called “first Bernoulli numbers”, and differ by a sign from those defined originally by Bernoulli.
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Finally, write 𝑞 = 𝑒2𝜋𝑖𝑧 and the formula follows from the identity

1
1 − 𝑞

=
∞

∑
𝑚=0

𝑞𝑚, |𝑞| < 1.

Lemma 1.9. For each 𝑘 ≥ 2 we have

∑
𝑑∈ℤ

1
(𝑧 + 𝑑)𝑘 = (−2𝜋𝑖)𝑘

(𝑘 − 1)!

∞
∑
𝑛=1

𝑛𝑘−1𝑞𝑛.

Proof. From Lemma 1.8 we have

1
𝑧

+
∞

∑
𝑑=1

( 1
𝑧 − 𝑑

+ 1
𝑧 + 𝑑

) = 𝜋𝑖 − 2𝜋𝑖
∞

∑
𝑑=0

𝑞𝑑, 𝑞 = 𝑒2𝜋𝑖𝑧.

Differentiating both sides with respect to 𝑧 gives

−1
𝑧2 +

∞
∑
𝑑=1

( −1
(𝑧 − 𝑑)2 + −1

(𝑧 + 𝑑)2 ) = −(2𝜋𝑖)2
∞

∑
𝑑=1

𝑑𝑞𝑑.

Since each of the terms in the infinite sum of the left hand side converges absolutely, we can
reorder the series and obtain the identity

∑
𝑑∈ℤ

1
(𝑧 + 𝑑)2 = (2𝜋𝑖)2

∞
∑
𝑑=1

𝑑𝑞𝑑.

This is proves the formula for 𝑘 = 2. The identity for general 𝑘 follows by induction, by
differentiating the identity for 𝑘 − 1.

We have finally all the ingredients to prove the sought expansion. As a piece of notation for
the next result, for 𝑚 ≥ 0 the is:

𝜎𝑚(𝑛) = ∑
𝑑∣𝑛

𝑑𝑚.

Theorem 1.5. Let 𝑘 ≥ 4 be even. Then

𝐺𝑘(𝑧) = 2𝜁(𝑘)𝐸𝑘(𝑧), where 𝐸𝑘(𝑧) = 1 − 2𝑘
𝐵𝑘

∞
∑
𝑛=1

𝜎𝑘−1(𝑛)𝑞𝑛 ∈ ℚ[[𝑞]].
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Proof. Consider now 𝑘 ≥ 4 and calculate

𝐺𝑘(𝑧) = ∑ ′

(𝑚,𝑛)∈ℤ2

1
(𝑚𝑧 + 𝑛)𝑘 = ∑

𝑛≠0

1
𝑛𝑘 + ∑

𝑚≠0
∑
𝑛∈ℤ

1
(𝑚𝑧 + 𝑛)𝑘

= 2𝜁(𝑘) + 2
∞

∑
𝑚=1

∑
𝑛∈ℤ

1
(𝑚𝑧 + 𝑛)𝑘 .

Here we have used the definition of Riemann’s zeta function at 𝑘 and the fact that 𝑘 is even.
Using now the formula of Lemma 1.9 where 𝑧 gets substituted by 𝑚𝑧, we can replace the second
term, and obtain the formula

𝐺𝑘(𝑧) = 2𝜁(𝑘) + 2
∞

∑
𝑚=1

((−2𝜋𝑖)𝑘

(𝑘 − 1)!

∞
∑
𝑑=1

𝑑𝑘−1𝑞𝑑𝑚) = 2𝜁(𝑘) + 2 ⋅ (−2𝜋𝑖)𝑘

(𝑘 − 1)!

∞
∑
𝑚=1

∞
∑
𝑑=1

𝑑𝑘−1𝑞𝑚𝑑.

Finally, group the terms in the inner sum that contribute to 𝑞𝑛. These consist of all pairs of
positive integers (𝑚, 𝑑) such that 𝑚𝑑 = 𝑛. That is, for each 𝑛 we must consider all divisors 𝑑′

of 𝑛, and we can rewrite:
∞

∑
𝑚=1

∞
∑
𝑑=1

𝑑𝑘−1𝑞𝑚𝑑 =
∞

∑
𝑛=1

𝜎𝑘−1(𝑛)𝑞𝑛.

This gives the desired expansion, by using Equation 1.4.

Example 1.1. Define the

𝐸4 = 1 + 240
∞

∑
𝑛=1

𝜎3(𝑛)𝑞𝑛 ∈ 𝑀4

and
𝐸6 = 1 − 504

∞
∑
𝑛=1

𝜎5(𝑛)𝑞𝑛 ∈ 𝑀6.

Since both 𝐸3
4 and 𝐸2

6 are both in 𝑀12, its difference is also there. Computing we see that

𝐸3
4 − 𝐸2

6 = (1 + 720𝑞 + ⋯) − (1 − 1008𝑞 + ⋯) = 1728𝑞 + ⋯ ∈ 𝑆12,

and thus we may define

Δ(𝑧) = 𝐸3
4 − 𝐸2

6
1728

= 𝑞 − 24𝑞2 + 252𝑞3 + ⋯ ,

which is a cusp form of weight 12.
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1.5 Fundamental domains

−ρ̄
ρ = e

2πi
3

i =
√
−1

D

−1/2 1/2−1 1

Figure 1.2: Fundamental domain for SL2(ℤ)

Definition 1.9. Let Γ be a group acting on ℍ. A for Γ is closed subset 𝒟 ⊂ ℍ such that

1. The set 𝒟 is the closure of its interior.

2. Every point in ℍ is Γ-equivalent to a point of 𝒟.

3. If 𝑧, 𝑧′ ∈ 𝒟 are two distinct points which are Γ-equivalent then they lie on the boundary
of 𝒟.

Theorem 1.6. The subset 𝒟 of ℍ as above is a (connected) fundamental domain for SL2(ℤ).

Moreover the stabilizer 𝐻𝑧 of a point 𝑧 ∈ 𝒟 in SL2(ℤ) is

𝐻𝑧 =

⎧{{
⎨{{
⎩

𝐶6 = ⟨𝑆𝑇 ⟩ = ⟨( 0 −1
1 1 )⟩ 𝑧 = 𝜌,

𝐶′
6 = ⟨𝑇 𝑆⟩ = ⟨( 1 −1

1 0 )⟩ 𝑧 = 𝜌 + 1,
𝐶4 = ⟨𝑆⟩ = ⟨( 0 −1

1 0 )⟩ 𝑧 = 𝑖,
𝐶2 = ⟨−𝐼⟩ = ⟨( −1 0

0 −1 )⟩ else.
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Proof. Let 𝑧 ∈ ℍ. We have seen that, if 𝛾 ∈ SL2(ℤ), then

ℑ(𝛾𝑧) = ℑ(𝑧)
|𝑐𝑧 + 𝑑|2

, 𝛾 = (𝑎 𝑏
𝑐 𝑑) .

There are finitely many pairs (𝑐, 𝑑) ∈ ℤ2 such that |𝑐𝑧 + 𝑑| < 1. In particular, one can choose
a matrix 𝛾 ∈ ⟨𝑆, 𝑇 ⟩ ⊆ SL2(ℤ) such that

ℑ(𝛾𝑧) ≥ ℑ(𝛾′𝑧), ∀𝛾′ ∈ ⟨𝑆, 𝑇 ⟩ ⊆ SL2(ℤ).

By premultiplying 𝛾 by an appropriate power of 𝑇 (which does not change the imaginary part),
we may and do assume that |ℜ(𝛾𝑧)| ≤ 1

2 . We will now show that |𝛾𝑧| ≥ 1:

ℑ(𝛾𝑧) ≥ ℑ(𝑆𝛾𝑧) = ℑ(−1/𝛾𝑧) = ℑ(𝛾𝑧)
|𝛾𝑧|2

.

This implies |𝛾𝑧| ≥ 1, and hence 𝛾𝑧 ∈ 𝒟, thus proving (1).

In order to show (2), suppose that 𝑧′ = 𝛾𝑧 and both 𝑧 and 𝑧′ lie in 𝒟. Without loss of
generality, we may assume that ℑ(𝛾𝑧) ≥ ℑ(𝑧), or equivalently that

|𝑐𝑧 + 𝑑|2 = |𝑐𝑥 + 𝑑|2 + |𝑐𝑦|2 ≤ 1. (we write 𝑧 = 𝑥 + 𝑖𝑦).

Since 𝑦 > 1/2, this implies that |𝑐| ≤ 1. The case 𝑐 = 0 gives that |𝑑| ≤ 1 and since
( 𝑎 𝑏

𝑐 𝑑 ) ∈ SL2(ℤ) this means that 𝛾 = ± ( 1 𝑏
0 1 ), a translation matrix. Therefore 𝑧′ = 𝑧 ± 1.

Let us suppose that 𝑐 = 1 (the case 𝑐 = −1 is completely analogous). Then the condition
|𝑧 + 𝑑|2 ≤ 1 is only satisfied when |𝑧| = 1 (𝑑 = 0), when 𝑧 = 𝜌 (𝑑 = 1), or when 𝑧 = 𝜌 + 1
(𝑑 = −1), giving (2).

To study the stabilizers of points 𝑧 ∈ 𝒟, we can use the calculations that we have used to show
(2). If 𝛾𝑧 = 𝑧, then necessarily 𝑐 = ±1, and by changing 𝛾 to −𝛾 we may assume 𝑐 = 1. The
quadratic equation given by 𝛾𝑧 = 𝑧 gives that |𝑎 + 𝑑| < 2, so |𝑎 + 𝑑| ≤ 1. At the same time,
the fact that 𝑧 ∈ 𝒟 gives |𝑎 − 𝑑| ≤ 1. Together, these two inequalities give |𝑎| ≤ 1. We obtain
the following possibilities:

𝛾 𝑧 𝑧′ = 𝛾𝑧 fixed points

± ( 1 0
0 1 ) all 𝑧 all

± ( 1 1
0 1 ) ℜ(𝑧) = −1

2 𝑧 + 1 none
± ( 1 −1

0 1 ) ℜ(𝑧) = 1
2 𝑧 − 1 none

± ( 0 −1
1 0 ) |𝑧| = 1 −1/𝑧 𝑖

± ( −1 −1
1 0 ) , ± ( 0 −1

1 1 ) 𝜌 𝜌 𝜌
± ( 1 −1

1 0 ) , ± ( 0 −1
1 −1 ) 𝜌 + 1 𝜌 + 1 𝜌 + 1

By studying this table we conclude the classification of stabilizers.
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Corollary 1.3. The group SL2(ℤ) is generated by the matrices 𝑇 and 𝑆.

Proof. Let 𝑧0 be a point in the interior of 𝒟. Given 𝛾 ∈ SL2(ℤ), the theorem provides a matrix
𝛿 ∈ ⟨𝑇 , 𝑆⟩ such that 𝛿𝛾−1𝑧0 ∈ 𝒟. Therefore 𝛿𝛾−1𝑧0 = 𝑧0 and hence 𝛿𝛾−1 = ±𝐼. Since 𝑆2 = −𝐼,
we are done by possibly multiplying 𝛿 by 𝑆2.

1.6 Valence formula

Let 𝑓 be a meromorphic function on some open subset of ℍ. Write 𝑣𝑝(𝑓) for the order (or
valuation) of 𝑓 at 𝑝 ∈ ℍ ∪ {∞}. This is the unique integer 𝑛 such that (𝑧 − 𝑝)−𝑛𝑓(𝑧) is
holomorphic and non-vanishing at 𝑝. If 𝑛 is positive we say that 𝑓 has a zero of order 𝑛, and if
𝑛 is negative we say that 𝑓 has a pole of order −𝑛. If 𝑓 is weakly modular and meromorphic at
infinity, then also define 𝑣∞(𝑓) = 𝑛0 if

𝑓(𝑞) = ∑
𝑛≥𝑛0

𝑎𝑛𝑞𝑛, 𝑎𝑛0
≠ 0.

Next, suppose that 𝑓 has a Laurent expansion of the form

𝑓(𝑧) = ∑
𝑛≥𝑛0

𝑐𝑛(𝑧 − 𝑝)𝑛.

The of 𝑓 at 𝑝 is res𝑝(𝑓) = 𝑐−1 ∈ ℂ. One can calculate the order of 𝑓 at 𝑝 by using residues,
using the following lemma.

Lemma 1.10. If 𝑓 is a meromorphic function around a point 𝑝, then

res𝑝(𝑓 ′/𝑓) = 𝑣𝑝(𝑓).

Proof. If 𝑣𝑝(𝑓) = 𝑛, write 𝑓(𝑧) = (𝑧 − 𝑝)𝑛𝑔(𝑧) with 𝑔(𝑧) holomorphic and non-vanishing at 𝑝.
Then calculate the residue of 𝑓 ′/𝑓 by hand.

We recall without proof two basic results of complex analysis.

Theorem 1.7. Let 𝑔 be a holomorphic function on an open subset 𝑈 ⊆ ℂ and let 𝐶 be a
contour in 𝑈. For each 𝑝 ∈ 𝑈,

∫
𝐶

𝑔(𝑧)
𝑧 − 𝑝

𝑑𝑧 = 2𝜋𝑖𝑔(𝑝).

Corollary 1.4. Let 𝐶(𝑝, 𝑟, 𝛼) be an arc of a circle, of radius 𝑟 and angle 𝛼 around a point 𝑝.
If 𝑔 is holomorphic at 𝑝, then

lim
𝑟⟶0

∫
𝐶(𝑝,𝑟,𝛼)

𝑔(𝑧)
𝑧 − 𝑝

𝑑𝑧 = 𝛼𝑖𝑔(𝑝).
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The following result relates the contour integral of the logarithmic derivative of 𝑓 to the orders
of 𝑓 at the interior points.

Theorem 1.8. Let 𝑓 be a meromorphic function on an open subset 𝑈 ⊆ ℂ and let 𝐶 be a
contour in 𝑈 not passing through any zeros or poles of 𝑓. Then:

∫
𝐶

𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 = 2𝜋𝑖 ∑
𝑧∈int(𝐶)

𝑣𝑧(𝑓).

Corollary 1.5. Let 𝐶(𝑝, 𝑟, 𝛼) be an arc of a circle, of radius 𝑟 and angle 𝛼 around a point 𝑝.
If 𝑓 is meromorphic at 𝑝, then

lim
𝑟⟶0

∫
𝐶(𝑝,𝑟,𝛼)

𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 = 𝛼𝑖𝑣𝑝(𝑓).

We will study weakly modular meromorphic functions 𝑓∶ ℍ ⟶ ℂ. In this case, the order of
vanishing makes sense in SL2(ℤ)-orbits: suppose that 𝑓 has weight 𝑘. Then an easy computation
shows that, for 𝛾 ∈ SL2(ℤ),

lim
𝑧⟶𝛾𝑝

(𝑧 − 𝛾𝑝)−𝑛𝑓(𝑧) = 𝑗(𝛾, 𝑝)𝑘+2𝑛 lim
𝑧⟶𝑝

(𝑧 − 𝑝)−𝑛𝑓(𝑧).

But note now that 𝑗(𝛾, 𝑝) is nonzero because 𝑝 ∉ ℚ ∪ {∞}. We conclude that 𝑣𝑝(𝑓) = 𝑣𝛾𝑝(𝑓).

Theorem 1.9. Let 𝑓 be a non-zero weakly modular meromorphic form of weight 𝑘 on SL2(ℤ).
Then:

𝑣∞(𝑓) + 1
2

𝑣𝑖(𝑓) + 1
3

𝑣𝜌(𝑓) + ∑
𝜏∈SL2(ℤ)\ℍ′

𝑣𝜏(𝑓) = 𝑘
12

.

Here the sum runs through the orbits in SL2(ℤ)\ℍ other than those of 𝑖 and 𝜌.

Before proving this theorem we will see how helpful it is in studying the spaces of modular
forms.

Theorem 1.10.

1. 𝑀𝑘 = {0} if 𝑘 < 0 or 𝑘 = 2.

2. 𝑆𝑘 = {0} if 𝑘 < 12.

3. 𝑀0 = ℂ.

4. 𝑆12 = ℂΔ.

Proof. Proof.
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1. Since the left-hand side of the valence formula is non-negative, the right hand side must
be non-negative too, hence 𝑘 ≥ 0. If 𝑘 = 2, then we get 1/6 on the right-hand side.
However, the left-hand side is a sum of non-negative multiples of 1, 1/2 and 1/3, thus a
contradiction.

2. If 0 ≠ 𝑓 ∈ 𝑆𝑘, then 𝑣∞(𝑓) ≥ 1. Therefore the valence formula gives 𝑘 ≥ 12.

3. Let 𝑓 ∈ 𝑀0. Since the constant function 𝑔 = 𝑓(∞) also belongs to 𝑀0, the difference
𝑓 − 𝑔 belongs to 𝑆0 = {0}. Therefore 𝑓 = 𝑔 is constant, and 𝑀0 = ℂ is the space of
constant functions on ℍ.

4. If 𝑓 ∈ 𝑆12, then 𝑣∞(𝑓) ≥ 1. Therefore by the valence formula 𝑣∞(𝑓) = 1 and 𝑓 has no
other zeros or poles. Define

𝑔(𝑧) = 𝑓(𝑧) − 𝑓(𝑖)
Δ(𝑖)

Δ(𝑧).

Then 𝑔(𝑧) ∈ 𝑆12 and 𝑔(𝑖) = 0. If 𝑔 is non-zero, then the valence formula applied to 𝑔
would give a contradiction because 𝑣∞(𝑔) ≥ 1 and 𝑣𝑖(𝑔) ≥ 1. Therefore 𝑔 = 0 and 𝑓 is a
multiple of Δ.

Corollary 1.6.

1. For all 𝑘, we have 𝑆𝑘+12 = Δ𝑀𝑘.

2. For 𝑘 ≥ 4 we have
𝑀𝑘 = (ℂ𝐸𝑘) ⊕ 𝑆𝑘

3. If 𝑘 is odd or negative then 𝑀𝑘 = {0}. For each even 𝑘 ≥ 2, we have:

dim(𝑀𝑘) = {
⌊ 𝑘

12⌋ 𝑘 ≡ 2 (mod 12),
1 + ⌊ 𝑘

12⌋ 𝑘 ≢ 2 (mod 12).

Proof. For 𝑘 < 0 the first statement is trivial, and we just proved it also for 𝑘 = 0. Given
𝑓 ∈ 𝑆𝑘+12, the function 𝑔 = 𝑓/Δ is holomorphic on ℍ because Δ is non-vanishing, and it
belongs to 𝑀𝑘 because 𝑣∞(𝑔) = 𝑣∞(𝑓) − 𝑣∞(Δ) = 𝑣∞(𝑓) − 1 ≥ 0.

Consider the linear map
𝜑∶ 𝑀𝑘 ⟶ ℂ, 𝑓 ↦ 𝑓(∞).

Then 𝑆𝑘 = ker 𝜑. Also 𝜑 is surjective because 𝜑(𝐸𝑘) = 1. Therefore 𝑀𝑘 = ℂ𝐸𝑘 ⊕ 𝑆𝑘.

Note that this gives a recursive way to obtain 𝑀𝑘:

𝑀𝑘 = ℂ𝐸𝑘 ⊕ 𝑆𝑘 = ℂ𝐸𝑘 ⊕ (Δ𝑀𝑘−12).
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For 𝑘 odd we know that 𝑀𝑘 = {0} by the weak-modularity condition. For 𝑘 < 0 we also
know 𝑀𝑘 = {0} by the previous part. We prove the remaining formula by induction on
𝑘. Note that we already know it for 𝑘 = 0 and 𝑘 = 2. For 𝑘 = 4, 6, 8, 10 then since
dim(𝑀𝑘) = 1 + dim(𝑆𝑘) = 1 + dim(𝑀𝑘−12) = 1 we get dim(𝑀𝑘) = 1. If 𝑘 is even and 𝑘 ≥ 12,
then:

dim(𝑀𝑘) = 1 + dim(𝑀𝑘−12).

Corollary 1.7. The space 𝑀𝑘 has for basis the following set:

𝑀𝑘 = ⟨𝐸𝑎
4 𝐸𝑏

6 | 𝑎 ≥ 0, 𝑏 ≥ 0, 4𝑎 + 6𝑏 = 𝑘⟩.

Proof. We start by showing that the given monomials 𝐸𝑎
4 𝐸𝑏

6 generate 𝑀𝑘. For 𝑘 = 2, 4, 6 this
is clear because we know 𝑀2 = {0}, and 𝑀4 = ℂ𝐸4 and 𝑀6 = ℂ𝐸6. For 𝑘 ≥ 8 we induct on 𝑘.
Choose some pair (𝑎, 𝑏) such that 4𝑎 + 6𝑏 = 𝑘 (convince yourself that this is always possible).
If 𝑓 ∈ 𝑀𝑘, then since 𝐸𝑎

4 𝐸𝑏
6(∞) = 1, the function 𝑔(𝑧) = 𝑓(𝑧) − 𝑓(∞)𝐸𝑎

4 𝐸𝑏
6 is a cusp form in

𝑆𝑘. Therefore 𝑔 = Δℎ, for some ℎ ∈ 𝑀𝑘−12. By induction hypothesis, ℎ is a linear combination
of monomials 𝐸𝑥

4 𝐸𝑦
6 for appropriate pairs (𝑥, 𝑦). Using the expression Δ = 1

1728(𝐸3
4 − 𝐸2

6) we
deduce the result for 𝑓.

Now we show that the given monomials are linearly independent. We can use induction on 𝑘 in
steps of 12 once more, to show that the number of such monomials agrees with dim 𝑀𝑘. This
can be checked by hand for 𝑘 ≤ 14. Suppose that 𝑘 ≥ 14. Note that each monomial 𝐸𝑎

4 𝐸𝑏
6 of

weight 𝑘 − 12 gives a monomial 𝐸𝑎
4 𝐸𝑏+2

6 of weight 𝑘. All such monomials are obtained in this
way, except for those of the form 𝐸𝑎

4 or 𝐸𝑎
4 𝐸6. When 𝑘 ≡ 0 (mod 4) then 𝐸𝑘/4

4 is of weight 𝑘,
and when 𝑘 ≡ 2 (mod 4) then 𝐸(𝑘−6)/2

4 𝐸6 is of weight 𝑘, thus in any case there is exactly one
more monomial of weight 𝑘 than there are of weight 𝑘 − 12. This completes the proof.

Example 1.2. This allows to write down all spaces of modular and cusp forms for SL2(ℤ).
For example,

𝑀18 = ℂ𝐸18 ⊕ 𝑆18 = ℂ𝐸18 ⊕ Δ𝑀6 = ℂ𝐸18 ⊕ ℂΔ𝐸6.

𝑀30 = ℂ𝐸30 ⊕ ℂΔ𝐸18 ⊕ ℂΔ2𝐸6.

Another basis for the same space (which is better because it is expressed in terms of 𝐸4, 𝐸6
and Δ):

𝑀30 = ℂ𝐸5
6 ⊕ Δ𝐸3

6 ⊕ Δ2𝐸6.

Note that these forms are linearly independent (why?). Since dim 𝑀30 = 3, they form a basis.

Suppose that 𝑓(𝑧) is a non-zero weakly-modular form of weight 0. Then 𝑓(𝛾𝑧) = 𝑓(𝑧). By the
valence formula, 𝑓 has the same number of zeros as poles. This number is called the valence of
𝑓, and hence the name for the theorem.

Another very powerful application of the valence formula is the following:
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Theorem 1.11. Let 𝑓 be a modular form of weight 𝑘. Suppose that 𝑓 has a 𝑞-expansion of the
form ∑𝑛≥0 𝑎𝑛𝑞𝑛. If 𝑎𝑗 = 0 for all 0 ≤ 𝑗 ≤ 𝑘/12, then 𝑓 = 0.

Proof. The hypothesis means that 𝑣∞(𝑓) > 𝑘/12. This is incompatible with the valence
formula, and thus 𝑓 must be zero.

Corollary 1.8. Let 𝑓 and 𝑔 be two modular forms of the same weight 𝑘, and suppose that their
𝑞-expansions coincide for the first ⌊𝑘/12⌋ coefficients. Then 𝑓 = 𝑔.

1.6.1 The modular invariant 𝑗

Define the function

𝑗(𝑧) = 𝐸3
4

Δ
= 1 + ⋯

𝑞 + ⋯
= 𝑞−1 + 744 + 196884𝑞 + ⋯ .

Proposition 1.4.

1. 𝑗 is a meromorphic weakly-modular form of weight 0.

2. 𝑗 is holomorphic on ℍ and has a simple pole at infinity.

3. It induces a bijection SL2(ℤ)\ℍ ⟶ ℂ.

Proof. The fact that 𝑗 it is meromorphic weakly-modular of weight 0 follows from it being a
quotient of two modular forms of weight 12.

Since 𝐸4 is non-vanishing at infinity and Δ has a simple zero then 𝑗 = 𝐸3
4/Δ has a simple

pole at infinity (we can also see it from its 𝑞-expansion, which starts with 𝑞−1). The valence
formula shows that 𝑣𝜌(𝐸4) = 1, and therefore 𝑗(𝑧) has a triple zero at 𝜌. It is holomorphic on
ℍ because Δ is non-vanishing on ℍ.

Fix 𝑐 ∈ ℂ. The function 𝑗(𝑧) − 𝑐 = 𝑞−1 + 744 − 𝑐 + ⋯ is another meromorphic weakly-modular
function of weight 0 and has a simple pole at ∞. The valence formula gives in this case that
𝑗(𝑧) − 𝑐 has exactly one zero on SL2(ℤ)\ℍ. This gives the last claim.

1.6.2 Proof of the valence formula

The proof presented here avoids algebraic geometry, at the cost of some complex analysis. Let
𝑓 be a modular function, and consider the following contour:

The proof consists in integrating 𝑓 ′(𝑧)/𝑓(𝑧) around the indicated contour 𝐶 in two different
ways.
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Figure 1.3: Contour to integrate
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1.6.2.0.1 Integral residue formula:

This is the first way in which we calculate the contour integral. For 𝑅 large enough so that the
contour contains all zeros and poles of SL2(ℤ)\ℍ′ with large imaginary part, we have:

∫
𝐶

𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 = 2𝜋𝑖 ∑
𝑝∈int(𝐶)

res𝑝 (𝑓 ′

𝑓
) = 2𝜋𝑖 ∑

𝑝∈SL2(ℤ)\ℍ′

𝑣𝑝(𝑓).

The rest of the proof consists in computing the integral as the sum of the path integrals along
𝐶1,…, 𝐶8.

1.6.2.0.2 Integral along 𝐶1:

Perform the change of variables 𝑞(𝑧) = 𝑒2𝜋𝑖𝑧. Note that:

𝑑𝑞 = 2𝜋𝑖𝑞𝑑𝑧, 𝑑𝑧 = 1
2𝜋𝑖

𝑑𝑞
𝑞

.

Moreover, the path 𝑞(𝐶1) is a clockwise circle of radius 𝑒−2𝜋𝑅 centered around 0. Finally,

𝑑
𝑑𝑧

𝑓(𝑞) = 𝑑
𝑑𝑧

𝑓(𝑒2𝜋𝑖𝑧) = 2𝜋𝑖𝑞𝑓 ′(𝑞).

Putting these together, we obtain:

∫
𝐶1

𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 = ∫
𝑞(𝐶1)

𝑓 ′(𝑞)
𝑓(𝑞)

𝑑𝑞.

Since 𝑓 is meromorphic around infinity, this last quantity equals −𝑣∞(𝑓).

1.6.2.0.3 Integral along 𝐶2 and 𝐶8:

Note that since 𝑓 is modular it satisfies 𝑓(𝑧 + 1) = 𝑓(𝑧). Therefore also 𝑓 ′(𝑧 + 1) = 𝑓 ′(𝑧), and
we get, by changing 𝑤 = 𝑧 + 1:

∫
𝐶8

𝑓 ′(𝑤)
𝑓(𝑤)

𝑑𝑤 = − ∫
𝐶2

𝑓 ′(𝑧 + 1)
𝑓(𝑧 + 1)

𝑑𝑧 = − ∫
𝐶2

𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧.

Therefore the contributions of 𝐶2 and 𝐶8 cancel out.
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1.6.2.0.4 Integral along 𝐶4 and 𝐶6:

In the same way that for 𝐶2 and 𝐶8 we considered the change 𝑧 ↦ 𝑧 + 1, here we consider the
change 𝑧 ↦ 𝑠(𝑧) = −𝑧−1. This change of variables transforms 𝐶4 to −𝐶6. Weak-modularity of
𝑓 implies also that 𝑓(𝑧) = 𝑧−𝑘𝑓(𝑠(𝑧)). Differentiating both sides yields:

𝑓 ′(𝑧) = −𝑘𝑧−𝑘−1𝑓(𝑠(𝑧)) + 𝑧−𝑘𝑓 ′(𝑠(𝑧))𝑠′(𝑧).

This gives
𝑓 ′(𝑧)
𝑓(𝑧)

= −𝑘
𝑧

+ 𝑓 ′(𝑠(𝑧))𝑠′(𝑧)
𝑓(𝑠(𝑧))

.

Therefore we may compute

∫
𝐶4

𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 = ∫
𝐶4

−𝑘
𝑧

𝑑𝑧 + ∫
𝐶4

𝑓 ′(𝑠(𝑧))𝑠′(𝑧)
𝑓(𝑠(𝑧))

𝑑𝑧 = 2𝜋𝑖 𝑘
12

+ ∫
−𝐶6

𝑓 ′(𝑠)
𝑓(𝑠)

𝑑𝑠,

and hence
∫

𝐶4+𝐶6

𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 ⟶𝑟⟶0 2𝜋𝑖 𝑘
12

.

1.6.2.0.5 Integral along 𝐶5:

Using the argument principle we obtain

∫
𝐶5

𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧
[
𝑟⟶ 0] ⟶ −1

2
2𝜋𝑖𝑣𝑖(𝑓).

1.6.2.0.6 Integrals along 𝐶3 and 𝐶7:

Applying again the argument principle we obtain

∫
𝐶3

𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧
[
𝑟⟶ 0] ⟶ −1

6
2𝜋𝑖𝑣𝜌(𝑓), and ∫

𝐶5

𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧
[
𝑟⟶ 0] ⟶ −1

6
2𝜋𝑖𝑣𝜌+1(𝑓) = −1

6
2𝜋𝑖𝑣𝜌(𝑓).

Therefore
∫

𝐶3+𝐶5

𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧
[
𝑟⟶ 0] ⟶ −1

3
2𝜋𝑖𝑣𝜌(𝑓).

1.6.2.0.7 Conclusion:

Putting together all the above calculations yields the sought formula.
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1.7 A product formula for Δ(𝑧)

Consider the weight-2 Eisenstein series

𝐺2(𝑧) = ∑
𝑐

∑ ′

𝑑

1
(𝑐𝑧 + 𝑑)2 ,

which does not converge absolutely. It is not a weight-2 modular form (there are no such other
than 0), but we still have the formula:

𝐺2(𝑧) = 2𝜁(2)𝐸2(𝑧), 𝐸2(𝑧) = 1 − 24
∞

∑
𝑛=1

𝜎1(𝑛)𝑞𝑛.

The function 𝐸2(𝑧) is holomorphic on ℍ, and 𝐸2(𝑧 + 1) = 𝐸2(𝑧). However, we are about to
see that

𝑧−2𝐸2(−1/𝑧) = 𝐸2(𝑧) + 12
2𝜋𝑖𝑧

.

Sometimes these functions are called .

Theorem 1.12. The function 𝐺2 satisfies 𝐺2(𝑧 + 1) = 𝐺2(𝑧) and it has the 𝑞-expansion

𝐺2(𝑧) = 2𝜁(2) − 8𝜋2
∞

∑
𝑛=1

𝜎1(𝑛)𝑞𝑛, 𝑞 = 𝑒2𝜋𝑖𝑧.

Moreover, 𝐺2 satisfies the transformation property:

𝐺2(𝛾𝑧) = (𝑐𝑧 + 𝑑)2𝐺2(𝑧) − 2𝜋𝑖𝑐(𝑐𝑧 + 𝑑), 𝛾 = (𝑎 𝑏
𝑐 𝑑) . (1.5)

In particular, the non-holomorphic function 𝐺∗
2(𝑧) = 𝐺2(𝑧) − 𝜋/ℑ(𝑧) is weight-2-invariant for

SL2(ℤ).

Proof. To show that 𝐺2(𝑧 + 1) = 𝐺2(𝑧), we must show that

∑
𝑛≠0

1
(𝑚(𝑧 + 1) + 𝑛)2 = ∑

𝑛≠0

1
(𝑚𝑧 + 𝑛)2 .

This follows from the fact that the sum converges absolutely and 𝑛 ↦ 𝑛 + 𝑚 is a bijection of ℤ
(for each fixed 𝑚 ∈ ℤ).

Next, we compute the 𝑞-expansion of 𝐺2. First, note that

𝐺2(𝑧) = 2𝜁(2) + 2
∞

∑
𝑚=1

∑
𝑛∈ℤ

1
(𝑚𝑧 + 𝑛)2 .
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Using now Lemma 1.9 with 𝑧 substituted by 𝑚𝑧, we obtain

𝐺2(𝑧) = 2𝜁(2) − 8𝜋2
∞

∑
𝑚=1

∞
∑
𝑑=1

𝑑𝑞𝑚𝑑.

Grouping terms contributing to a given power of 𝑞 gives the formula.

Next, by expanding 𝐺2(𝛾1𝛾2𝑧), using the cocycle property of 𝑗(𝛾, 𝑧) and calculating the lower
left entry of the product of two matrices, we see that if Equation 1.5 is satisfied for matrices 𝛾1
and 𝛾2 then it is also satisfied for 𝛾1𝛾2 and 𝛾−1

1 . Therefore to prove Equation Equation 1.5 it
will be enough to prove it for the matrix 𝑆 = ( 0 −1

1 0 ).

We next show that

𝐺2(−1/𝑧) = 𝑧2 (2𝜁(2) + ∑
𝑛∈ℤ

∑
𝑚≠0

1
(𝑚𝑧 + 𝑛)2 ) .

This only differs from 𝑧2𝐺2(𝑧) in the order of summation! This is done by substituting −1/𝑧
in the definition to get:

𝐺2(−1/𝑧) = ∑
𝑛≠0

1
𝑛2 + ∑

𝑚≠0
∑
𝑛∈ℤ

𝑧2

(𝑚𝑧 − 𝑛)2 = ∑
𝑛≠0

1
𝑛2 + ∑

𝑚≠0
∑
𝑛∈ℤ

𝑧2

(𝑚 − 𝑛𝑧)2

This can be rewritten as

2𝜁(2) + 𝑧2 (∑
𝑛∈ℤ

∑
𝑚≠0

1
(𝑚𝑧 + 𝑛)2 ) = 2𝜁(2) + 𝑧2 (∑

𝑛≠0
∑
𝑚≠0

1
(𝑚𝑧 + 𝑛)2 + 2𝜁(2)) .

The outer term 2𝜁(2) can be put into the sum corresponding to the term 𝑛 = 0, getting the
desired formula. The partial fraction decomposition

1
(𝑚𝑧 + 𝑛)(𝑚𝑧 + 𝑛 + 1)

= 1
𝑚𝑧 + 𝑛

− 1
𝑚𝑧 + 𝑛 + 1

allows us to show (via a telescoping sum) that

∑
𝑚≠0

∑
𝑛∈ℤ

1
(𝑚𝑧 + 𝑛)(𝑚𝑧 + 𝑛 + 1)

= 0

Subtracting this series from the definition of 𝐺2(𝑧) (which can be done term by term, this only
needs conditional convergence) we get the new formula involving an absolutely convergent sum:

𝐺2(𝑧) = 2𝜁(2) + ∑
𝑚≠0
𝑛∈ℤ

1
(𝑚𝑧 + 𝑛)2(𝑚𝑧 + 𝑛 + 1)

.
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Then we compute

𝑧−2𝐺2(−1/𝑧) − 𝐺2(𝑧) = ∑
𝑛∈ℤ

∑
𝑚≠0

1
(𝑚𝑧 + 𝑛)2 − ∑

𝑚≠0,𝑛∈ℤ

1
(𝑚𝑧 + 𝑛)2(𝑚𝑧 + 𝑛 + 1)

.

Subtracting term by term and using that

1
(𝑚𝑧 + 𝑛)2 − 1

(𝑚𝑧 + 𝑛)2(𝑚𝑧 + 𝑛 + 1)
= 1

(𝑚𝑧 + 𝑛)(𝑚𝑧 + 𝑛 + 1)

gives an alternative formula for 𝐺2(𝑧):

𝐺2(𝑧) = 𝑧−2𝐺2(−1/𝑧) − ∑
𝑛∈ℤ

∑
𝑚≠0

1
(𝑚𝑧 + 𝑛)(𝑚𝑧 + 𝑛 + 1)

.

Finally, consider the sum

lim
𝑁⟶∞

𝑁−1
∑

𝑛=−𝑁
∑
𝑚≠0

( 1
𝑚𝑧 + 𝑛

− 1
𝑚𝑧 + 𝑛 + 1

) .

For each fixed 𝑁 we can reverse the sum and calculate, since the inner sum telescopes:

∑
𝑚≠0

𝑁−1
∑

𝑛=−𝑁
( 1

𝑚𝑧 + 𝑛
− 1

𝑚𝑧 + 𝑛 + 1
) = ∑

𝑚≠0
( 1

𝑚𝑧 − 𝑁
− 1

𝑚𝑧 + 𝑁
)

= −1
𝑧

∑
𝑚≠0

( 1
𝑁/𝑧 + 𝑚

+ 1
𝑁/𝑧 − 𝑚

)

= −2𝜋
𝑧

cot(𝜋𝑁/𝑧).

Taking the sum as 𝑁 ⟶ ∞ and using that

𝜋 cot(𝜋𝑁/𝑧) = 𝜋𝑖 − 2𝜋𝑖
∞

∑
𝑚=0

𝑒2𝜋𝑖𝑚𝑁/𝑧

we get the formula:

lim
𝑁⟶∞

𝑁−1
∑

𝑛=−𝑁
∑
𝑚≠0

( 1
𝑚𝑧 + 𝑛

− 1
𝑚𝑧 + 𝑛 + 1

) = −2𝜋𝑖
𝑧

.

This finishes the proof.
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1.7.1 The Dedekind-eta function

Define 𝜂(𝑧) as through the following product

𝜂(𝑧) = 𝑞1/24
∞
∏
𝑛=1

(1 − 𝑞𝑛).

The function 𝜂(𝑧) is holomorphic and non-vanishing on ℍ (to check it, it is enough to check
that ∑ 𝑞𝑛 converges absolutely and uniformly on compact subsets of ℍ).

Theorem 1.13. The 𝜂 function satisfies the following transformation property:

𝜂(−1/𝑧) = √𝑧/𝑖𝜂(𝑧).

Proof. Note that:

𝑑
𝑑𝑧

log 𝜂(𝑧) = 2𝜋𝑖
24

+
∞

∑
𝑛=1

−2𝜋𝑖𝑛𝑞𝑛

1 − 𝑞𝑛 = 2𝜋𝑖
24

(1 − 24
∞

∑
𝑛=1

𝑛𝑞𝑛

1 − 𝑞𝑛 )

= 𝜋𝑖
12

(1 − 24
∞

∑
𝑛=1

𝑛
∞

∑
𝑚=1

𝑞𝑛𝑚) = 𝜋𝑖
12

𝐸2(𝑧).

Using quasi-modularity of 𝐸2, we deduce:

dlog (𝜂(−1/𝑧)) = dlog (√𝑧/𝑖𝜂(𝑧)) .

Therefore 𝜂(−1/𝑧) = 𝐶√𝑧/𝑖𝜂(𝑧) and setting 𝑧 = 𝑖 one gets 𝐶 = 1, as we wanted.

Theorem 1.14.
Δ = 𝑞

∞
∏
𝑛=1

(1 − 𝑞𝑛)24.

Proof. Note that:

𝜂24(𝑧) = 𝑞
∞
∏
𝑛=1

(1 − 𝑞𝑛)24,

so 𝜂24(𝑧 + 1) = 𝜂24(𝑧). Moreover,

𝜂24(−1/𝑧) = 𝑧12𝜂24(𝑧).

Since 𝜂24(𝑧) = 𝑞 + ⋯ and 𝜂24(𝑧) ∈ 𝑆12 = ℂΔ, we deduce that 𝜂24 = Δ.
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1.8 Growth of Fourier coefficients

In this final section we study the different behavior of the Fourier coefficients of a modular
form 𝑓, depending on whether 𝑓 is cuspidal or not. Intuitively, if 𝑓 is cuspidal, the vanishing at
infinity should force the coefficients to grow slower.

We start by studying Eisenstein series.

Proposition 1.5. The Fourier coefficients 𝑎𝑛(𝐸𝑘) of the Eisenstein series 𝐸𝑘 grow as 𝑛𝑘−1.
Precisely, there exist constant 𝐴, 𝐵 > 0 such that

𝐴𝑛𝑘−1 ≤ |𝑎𝑛(𝐸𝑘)| ≤ 𝐵𝑛𝑘−1.

Proof. We will use that the Fourier coefficients of 𝐸𝑘 have a simple formula:

𝐸𝑘 = 1 + 𝐶𝑘

∞
∑
𝑛=1

𝜎𝑘−1(𝑛)𝑞𝑛,

and hence |𝑎𝑛(𝐸𝑘)| = |𝐶𝑘|𝜎𝑘−1(𝑛). Therefore

|𝑎𝑛(𝐸𝑘)| = |𝐶𝑘| ∑
𝑑∣𝑛

𝑑𝑘−1 ≥ |𝐶𝑘|𝑛𝑘−1,

and we may take 𝐴 = |𝐶𝑘|. On the other hand,

|𝑎𝑛(𝐸𝑘)|
𝑛𝑘−1 = |𝐶𝑘| ∑

𝑑∣𝑛
( 𝑑

𝑛
)

𝑘−1
= |𝐶𝑘| ∑

𝑑∣𝑛

1
𝑑𝑘−1 .

This last term can be coarsely estimated:

|𝐶𝑘| ∑
𝑑∣𝑛

1
𝑑𝑘−1 ≥ |𝐶𝑘|

∞
∑
𝑑=1

1
𝑑𝑘−1 = |𝐶𝑘|𝜁(𝑘 − 1).

Hence we may take 𝐵 = |𝐶𝑘|𝜁(𝑘 − 1).

The following result shows that the coefficients of cusp forms grow much slower.

Theorem 1.15. If ∑∞
𝑛=1 𝑎𝑛𝑞𝑛 is the 𝑞-expansion of a cusp form of weight 𝑘, then 𝑎𝑛 = 𝑂(𝑛𝑘/2).

Precisely, there is a constant 𝑀 > 0 such that

|𝑎𝑛| ≤ 𝑀𝑛𝑘/2.
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Proof. Note that as 𝑞 ⟶ ∞ we have |𝑓(𝑧)| = 𝑂(𝑞) = 𝑂(𝑒−2𝜋𝑖), where 𝑦 = ℑ(𝑧). Consider the
function

𝜙(𝑧) = |𝑓(𝑧)|𝑦𝑘/2.

It is a continuous function ℍ ⟶ ℝ≥0, and it is invariant under SL2(ℤ). Since 𝜙 approaches 0
as 𝑦 approaches infinity, we deduce that 𝜙 is bounded: |𝑓(𝑧)| ≤ 𝑀 ′𝑦−𝑘/2 for all 𝑧 ∈ ℍ. Since
𝑓(𝑧)𝑞−𝑛−1 = ⋯ + 𝑎𝑛𝑞−1 + 𝑎𝑛+1 + 𝑎𝑛+2𝑞 + ⋯ the residue theorem implies that

𝑎𝑛 = 1
2𝜋𝑖

∫
𝐶𝑦

𝑓(𝑧)𝑞−𝑛−1𝑑𝑞,

where 𝐶𝑦 is the counter-clockwise circle described by 𝑒2𝜋𝑖(𝑥+𝑖𝑦) when 𝑦 is fixed and 𝑥 moves
from 0 to 1. This gives:

𝑎𝑛 = ∫
1

0
𝑓(𝑥 + 𝑖𝑦)𝑞−𝑛𝑑𝑥,

Using the bound for |𝑓| we obtain:

|𝑎𝑛| ≤ ∫
1

0
𝑀 ′𝑦−𝑘/2|𝑒−2𝜋𝑖𝑛(𝑥+𝑖𝑦)𝑑𝑥 = 𝑀 ′𝑦−𝑘/2𝑒2𝜋𝑦𝑛.

This expression is valid for all 𝑦 > 0. In particular, for 𝑦 = 1/𝑛 we get |𝑎𝑛| ≤ 𝑀 ′𝑒2𝜋𝑛𝑘/2.
Setting 𝑀 = 𝑀 ′𝑒2𝜋 finishes the proof.

Corollary 1.9. If 𝑓 is not a cusp form, then the coefficients 𝑎𝑛 grow as 𝑛𝑘−1.

Proof. If 𝑓 is a modular form of weight 𝑘, write 𝑓 = 𝜆𝐸𝑘 + ℎ, where ℎ is a cusp form. The
hypothesis of 𝑓 not being a cups form translates in 𝜆 ≠ 0. Therefore

𝑎𝑛(𝑓) = 𝜆𝑎𝑛(𝐸𝑘) + 𝑎𝑛(ℎ).

Since 𝑛𝑘−1 grows much faster than 𝑛𝑘/2 and 𝜆 ≠ 0, we deduce that 𝑎𝑛(𝑓) grows as 𝑛𝑘−1.
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2 Modular forms for congruence subgroups

2.1 Congruence subgroups

Let 𝑁 ≥ 1 be an integer. In this section we will consider subgroups of SL2(ℤ) that are especially
nice to work with. There are other subgroups that are interesting but beyond the scope of this
course.

Definition 2.1. The of level 𝑁 is

Γ(𝑁) = {𝛾 ∈ SL2(ℤ) | 𝛾 ≡ ( 1 0
0 1 ) (mod 𝑁)}.

Note that Γ(1) = SL2(ℤ), so we are strictly generalizing Chapter 1. Note also that Γ(𝑁) can be
defined as the kernel of the group homomorphism induced by the reduction map ℤ ⟶ ℤ/𝑁ℤ:

𝜋𝑁 ∶ SL2(ℤ) ⟶ SL2(ℤ/𝑁ℤ).

Therefore, Γ(𝑁) is a normal subgroup of SL2(ℤ), of finite index.

Proposition 2.1. The map 𝜋𝑁 is surjective.

Proof. Exercise.

There are too few principal congruence subgroups (only one for each 𝑁 ≥ 1), so it is desirable
to consider more general subgroups.

Definition 2.2. A subgroup Γ ⊆ SL2(ℤ) is a if there is some 𝑁 ≥ 1 such that

Γ(𝑁) ⊆ Γ ⊆ SL2(ℤ).

The of a congruence subgroup Γ is the minimum 𝑁 such that Γ(𝑁) ⊆ Γ.

One can think of many different ways to construct congruence subgroups. There are two
families that arise so frequently that have special notation for them:
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Example 2.1. For each 𝑁 ≥ 1, define

Γ1(𝑁) = {( 1 ∗
0 1 ) (mod 𝑁)},

and also
Γ0(𝑁) = {( ∗ ∗

0 ∗ ) (mod 𝑁)}.

Lemma 2.1. For each 𝑁 ≥ 1 there are inclusions Γ(𝑁) ⊆ Γ1(𝑁) ⊆ Γ0(𝑁) ⊆ SL2(ℤ), and

[Γ1(𝑁)∶ Γ(𝑁)] = 𝑁, [Γ0(𝑁)∶ Γ1(𝑁)] = 𝑁 ∏
𝑝∣𝑁

(1 − 1
𝑝

) , [SL2(ℤ) ∶ Γ0(𝑁)] = 𝑁 ∏
𝑝∣𝑁

(1 + 1
𝑝

) .

Proof. Exercise.

The inclusions are strict except for 𝑁 = 1 (where all groups coincide) and for Γ0(2) = Γ1(2).

Definition 2.3. A function 𝑓∶ ℍ ⟶ ℂ is of weight 𝑘 with respect to Γ if it is meromorphic on
ℍ and it satisfies

𝑓|𝑘𝛾 = 𝑓, ∀𝛾 ∈ Γ.

2.2 Cusps

Of course we will need to understand fundamental domains for the action of congruence
subgroups on ℍ. Here is for example a fundamental domain for Γ0(2):

In this case, the fundamental domain contains two points in its closure which do not belong to
ℍ: the cusp ∞ as before, but also 0. The following result gives a construction of a fundamental
domain for any congruence subgroup, using translates of the fundamental domain 𝒟 of SL2(ℤ)
seen in Chapter 1.

Proposition 2.2. Let Γ be a congruence subgroup of SL2(ℤ). If there is a decomposition

Γ\SL2(ℤ) = ⋃
ℎ∈𝑅

Γℎ, 𝑅 finite,

then the set 𝒟Γ = ∪ℎ∈𝑅ℎ𝒟 is a (possibly non-connected) fundamental domain for Γ.

Proof. If 𝑧 ∈ ℍ, then there exists 𝑔 ∈ SL2(ℤ) and 𝑧0 ∈ 𝒟 such that 𝑧 = 𝑔𝑧0. The coset
decomposition implies that there is some 𝛾 ∈ 𝑅 and some ℎ ∈ Γ such that 𝑔 = ℎ𝛾. Therefore

𝑧 = ℎ𝛾𝑧0.

Since 𝑧′
0 = 𝛾𝑧0 ∈ 𝛾𝒟 ⊂ 𝒟Γ we have written 𝑧 = ℎ𝑧′

0 with ℎ ∈ Γ.
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STD

Figure 2.1: A fundamental domain for Γ0(2)
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It remains to be shown that if 𝑧 ∈
∘

𝒟Γ and 𝛾𝑧 ∈
∘

𝒟Γ for some 𝛾 ∈ Γ, then 𝛾 = 1. For that, let
𝜀 > 0 be small enough so that the ball 𝐵𝜀(𝑧) of radius 𝜀 around 𝑧 is fully contained in

∘
𝒟Γ.

The ball 𝐵𝜀(𝑧) intersects some translates of 𝒟, say:

𝐵𝜀(𝑧) ∩ ℎ𝒟 ≠ ∅ ⟺ ℎ ∈ 𝑅′ ⊆ 𝑅.

Consider the translated ball 𝛾𝐵𝜀(𝑧) = 𝐵𝜀(𝛾𝑧). Since 𝛾𝑧 is also in the interior of 𝒟Γ, we deduce
that 𝛾𝐵𝜀(𝑧) must intersect the interior of some translate of 𝒟, say ℎ

∘
𝒟, for some ℎ ∈ 𝑅.

Therefore:
𝛾𝐵𝜀(𝑧) ∩ ℎ

∘
𝒟≠ ∅ ⟹ 𝐵𝜀(𝑧) ∩ 𝛾−1ℎ

∘
𝒟≠ ∅.

Since we listed all the translates whose interior intersected with 𝐵𝜀(𝑧), we must have that
𝛾−1ℎ = ℎ0. But now Γℎ = Γ𝛾−1ℎ = Γℎ0, and since both ℎ and ℎ0 belong to 𝑅, we must have
ℎ = ℎ0. Therefore 𝛾−1 = 1, or 𝛾 = 1 as we wanted.

In order to further study the cusps, we consider the ℙ1(ℚ) = ℚ ∪ {∞}. Note that SL2(ℤ) (in
fact GL2(ℚ)) acts on ℙ1(ℚ) by fractional linear transformations:

𝛾𝑥 = 𝑎𝑥 + 𝑏
𝑐𝑥 + 𝑑

, 𝛾 = (𝑎 𝑏
𝑐 𝑑) ∈ SL2(ℤ), 𝑥 ∈ ℙ1(ℚ).

Here we understand that 𝛾∞ = 𝑎
𝑐 , and 𝛾𝑥 = ∞ if 𝑐𝑥 = −𝑑.

Proposition 2.3. The action of SL2(ℤ) on ℙ1(ℚ) is transitive, and it induces a bijection

SL2(ℤ)/SL2(ℤ)∞ ≅ ℙ1(ℚ), SL2(ℤ)∞ = ⟨±𝑇 ⟩.

Proof. We will see that the orbit of ∞ is all of ℙ1(ℚ), where we note that ( 𝑎 𝑏
𝑐 𝑑 ) ∞ = 𝑎

𝑐 . Given
𝑎
𝑐 ∈ ℙ1(ℚ) in reduced terms (that is, such that (𝑎, 𝑐) = 1), then Bézout’s identity asserts the
existence of integers 𝑏 and 𝑑 such that 𝑎𝑑 − 𝑏𝑐 = 1. Then the matrix ( 𝑎 𝑏

𝑐 𝑑 ) belongs to SL2(ℤ)
and takes ∞ to 𝑎

𝑐 .

The stabilizer of ∞, written SL2(ℤ)∞, is:

SL2(ℤ)∞ = {(𝑎 𝑏
𝑐 𝑑) | (𝑎 𝑏

𝑐 𝑑) ∞ = ∞} = {(𝑎 𝑏
𝑐 𝑑) | 𝑎

𝑐
= ∞} = {(𝑎 𝑏

0 𝑑)} = ⟨±𝑇 ⟩.

Definition 2.4. The set of of a congruence subgroup Γ is the set Cusps(Γ) of Γ-orbits of
ℙ1(ℚ). Equivalently,

Cusps(Γ) = Γ\SL2(ℤ)/SL2(ℤ)∞.

If 𝑃 = [𝑎
𝑐 ] is a cusp of Γ, set Γ𝑃 for the of 𝑃 in Γ, the elements of Γ fixing 𝑃.
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Lemma 2.2. If 𝛾𝑃(∞) = 𝑃, then

Γ𝑃 = Γ ∩ 𝛾𝑃SL2(ℤ)∞𝛾−1
𝑃 .

Proof. Let 𝛾 ∈ Γ. Then observe that

𝛾 ∈ Γ𝑃 ⟺ 𝛾𝑃 = 𝑃 ⟺ 𝛾𝛾𝑃∞ = 𝛾𝑃∞
⟺ 𝛾−1

𝑃 𝛾𝛾𝑃∞ = ∞
⟺ 𝛾−1

𝑃 𝛾𝛾𝑃 ∈ SL2(ℤ)∞

⟺ 𝛾 ∈ 𝛾𝑃SL2(ℤ)∞𝛾−1
𝑃 .

This concludes the proof.

Lemma 2.3. The subgroup 𝐻𝑃 = 𝛾−1
𝑃 Γ𝛾𝑃 ∩ SL2(ℤ)∞ ⊆ SL2(ℤ)∞ does not depend on the

choice of the representative for 𝑃, and has finite index in SL2(ℤ)∞.

Proof. Just note that if 𝑎′

𝑐′ is another representative for 𝑃, then 𝛾𝑃 gets modified into 𝛾𝛾𝑃 for
some 𝛾 ∈ Γ. Then (𝛾𝛾𝑃)−1Γ(𝛾𝛾𝑃) = 𝛾−1

𝑃 Γ𝛾𝑃.

Lemma 2.4. Let 𝐻 be a subgroup of finite index in SL2(ℤ)∞, and let ℎ be the index of {±1}𝐻
in SL2(ℤ)∞. Then 𝐻 is one of he following:

𝐻 =
⎧{
⎨{⎩

⟨( 1 ℎ
0 1 )⟩

⟨( −1 ℎ
0 −1 )⟩

{±1} × ⟨( 1 ℎ
0 1 )⟩

Proof. Exercise.

Definition 2.5. The integer ℎΓ(𝑃 ) = ℎ in the above lemma is called 𝑃 for Γ. A cusp is an if
𝛾−1

𝑃 Γ𝑃𝛾𝑃 is of the form ⟨( −1 ℎ
0 −1 )⟩, and it is otherwise.

Example 2.2. In this example we show that if 𝑝 is any prime, then Cusps(Γ0(𝑝)) = {∞, 0}.

Write an element 𝛾 ∈ Γ0(𝑝) as ( 𝑎 𝑏
𝑝𝑐 𝑑 ), with 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ satisfying 𝑎𝑑 − 𝑝𝑏𝑐 = 1. The orbit of

∞ is:

Γ0(𝑝) ⋅ ∞ = {( 𝑎 𝑏
𝑝𝑐 𝑑) ∞} = { 𝑎

𝑝𝑐
∶ 𝑎, 𝑐 ∈ ℤ, gcd(𝑎, 𝑝𝑐) = 1} = {𝑟

𝑠
∶ 𝑝 ∣ 𝑠, gcd(𝑟, 𝑠) = 1} .

We thus see the orbit of the cusp ∞ consists of infinity together with all the rationals which
when expressed in reduced terms have a denominator which is divisible by 𝑝. One element
which is not in this orbit is 0 = 0

1 . Let us study then the orbit of 0.

Γ0(𝑝) ⋅ 0 = {( 𝑎 𝑏
𝑝𝑐 𝑑) 0} = { 𝑏

𝑑
∶ 𝑏, 𝑑 ∈ ℤ, gcd(𝑏, 𝑑) = 1, 𝑝 ∤ 𝑑}.
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As we have seen in the example above, each cusp may have a different width. However, if Γ is
a normal congruence subgroup of SL2(ℤ), the subgroup 𝐻𝑃 does not depend on the cusp 𝑃
and hence all cusps have the same width and regularity.

Although one can have more cusps than the index of Γ, the last result of this section says
that this is basically right, once one counts in a proper way. To prove it, we will need a
group-theoretic result.

Lemma 2.5. Let 𝐺 be a group acting transitively on a set 𝑋 and let 𝐻 be a finite index
subgroup of 𝐺. Then for any 𝑥 ∈ 𝑋 the stabilizer of 𝑥 in 𝐻 has finite index in the stabilizer of
𝑥 in 𝐺, and the following formula holds:

∑
𝑥∈𝐻\𝑋

[𝐺𝑥 ∶ 𝐻𝑥] = [𝐺∶ 𝐻].

Proof. Let 𝑥 ∈ 𝑋, and consider the inclusion map 𝐺𝑥 ⟶ 𝐺. By taking the quotient by 𝐻 we
get 𝐺𝑥 ⟶ 𝐻\𝐺. Suppose 𝑔1, 𝑔2 are mapped to the same element 𝐻𝑔 in 𝐻\𝐺. This means
that 𝐻𝑔1 = 𝐻𝑔2, or that 𝑔2𝑔−1

1 belongs to 𝐻. Since 𝑔2𝑔−1
1 stabilizes 𝑥 as well, we deduce that

𝐻𝑥𝑔1 = 𝐻𝑥𝑔2. Therefore there is an injection of 𝐻𝑥\𝐺𝑥 ↪ 𝐻\𝐺. Since by assumption the
latter set is finite, so is the first. Note also that the image of the map is precisely 𝐻\𝐻𝐺𝑥, and
thus we also obtain [𝐺𝑥 ∶ 𝐻𝑥] = [𝐻𝐺𝑥 ∶ 𝐻].

To prove the second assertion, fix an element 𝑥0 ∈ 𝑋, and consider the map

𝐻\𝐺 ⟶ 𝐻\𝑋, 𝐻𝑔 ↦ 𝐻𝑔𝑥0

which is surjective because 𝐺 acts transitively on 𝑋. The fibre 𝑇𝐻𝑥 of an orbit 𝐻𝑥 consists
of the set of classes 𝐻𝑔 such that 𝐻𝑔𝑥0 = 𝐻𝑥. Let 𝑔𝑥 ∈ 𝐺 be such that 𝑔𝑥𝑥0 = 𝑥. Write
𝐻𝑔 = 𝐻𝑔′𝑔𝑥 and then we have:

𝑇𝐻𝑥 ≅ {𝐻𝑔′ ∈ 𝐻\𝐺∶ 𝐻𝑔′𝑔𝑥𝑥0 = 𝐻𝑥} = {𝐻𝑔′ ∈ 𝐻\𝐺∶ 𝐻𝑔′𝑥 = 𝐻𝑥} = 𝐻\(𝐻𝐺𝑥) ≅ 𝐻𝑥\𝐺𝑥.

This allows us to find a formula for [𝐺∶ 𝐻]:

= #(𝐻\𝐺) = ∑
𝑥∈𝑅

#𝑇𝐻𝑥 = ∑
𝑥∈𝑅

[𝐺𝑥 ∶ 𝐻𝑥].

Theorem 2.1. Let Γ be a congruence subgroup. Then we have

∑
𝑃∈Cusps(Γ)

ℎΓ(𝑃 ) = [SL2(ℤ) ∶ {±1}Γ].
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Proof. Consider the group 𝐺 = PSL2(ℤ) = SL2(ℤ)/{±1}, which acts transitively on the set
𝑋 = ℙ1(ℚ). Let 𝐻 be the image of Γ in 𝐺. Note that 𝐻\𝑋 = Cusps(Γ). Also, 𝐺∞ is the
image in 𝐺 of SL2(ℤ)∞. For each 𝑥 ∈ 𝑋, let 𝛾 ∈ 𝐺 be such that 𝛾∞ = 𝑥. Then

𝐺𝑥 = 𝛾𝐺∞𝛾−1, and 𝐻𝑥 = 𝛾 (𝛾−1𝐻𝛾)
∞

𝛾−1.

Therefore
[𝐺𝑥 ∶ 𝐻𝑥] = [ ̄SL2(ℤ) ∶ Γ̄𝑃] = ℎΓ(𝑃 ),

where by (⋅) we write the image of the group inside 𝐺. Then applying Lemma 2.5 to this
setting gives

∑
𝑃∈Cusps(Γ)

ℎΓ(𝑃 ) = [𝐺∶ 𝐻] = [SL2(ℤ) ∶ {±1}Γ].

2.3 Fourier expansion at infinity

Let Γ be a congruence subgroup of level 𝑁. Note that the matrix ( 1 𝑁
0 1 ) belongs to Γ(𝑁), and

thus there is a minimum ℎ > 0 with the property that ( 1 ℎ
0 1 ) ∈ Γ.

Definition 2.6. The of Γ is the minimum ℎ > 0 such that ( 1 ℎ
0 1 ) ∈ Γ.

The fan width of a congruence subgroup of level 𝑁 is a divisor of 𝑁.

Write
𝑞ℎ = 𝑞ℎ(𝑧) = 𝑒 2𝜋𝑖𝑧

ℎ ,

and note that 𝑧 ↦ 𝑞ℎ(𝑧) is periodic with period ℎ. Define 𝑔 by 𝑔 = 𝑓 ∘𝑞−1
ℎ . That is, 𝑔(𝑞ℎ) = 𝑓(𝑧).

Although 𝑞ℎ is not invertible, the above definition makes sense, and 𝑔 has a Laurent expansion.

Definition 2.7. The 𝑞-expansion of 𝑓 at infinity is the Laurent expansion:

𝑓(𝑧) = 𝑔(𝑞ℎ) =
∞

∑
𝑛=−∞

𝑎(𝑛)𝑞𝑛
ℎ .

2.4 Expansions at cusps

Let 𝑠 be a cusp, 𝑠 ≠ ∞. Write 𝑠 = 𝛼∞ for some 𝛼 ∈ SL2(ℤ), and consider the equation:

𝑓(𝛼𝑧) = 𝑗(𝛼, 𝑧)𝑘(𝑓|𝑘𝛼)(𝑧).
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Since 𝑗(𝛼, 𝑧) ≠ 0, ∞ when 𝑧 is near ∞, the behavior of 𝑓(𝑧) near 𝑠 is related to the behavior of
(𝑓|𝑘𝛼)(𝑧) near ∞. Assume that 𝑓 is weakly modular for the congruence subgroup Γ. Since

(𝑓|𝑘𝛼)|𝑘(𝛼−1𝛾𝛼) = (𝑓|𝑘𝛾)|𝑘𝛼 = 𝑓|𝑘𝛼,

the new function 𝑓|𝑘𝛼 is invariant under the group Γ′ = 𝛼−1Γ𝛼. Since Γ(𝑁) is normal inside
SL2(ℤ), we deduce that Γ′ is also a congruence subgroup of level 𝑁. Hence 𝑓|𝑘𝛼 has a Fourier
expansion at infinity as in Section 2.3 in powers of 𝑞𝑁.

Definition 2.8. The 𝑠 is the expansion:

𝑓|𝑘𝛼 =
∞

∑
𝑛=−∞

𝑏(𝑛)𝑞𝑛
𝑁.

2.5 Definition of modular forms

The expansions at different cusps allow us to define modular forms for arbitrary congruence
subgroups.

Definition 2.9. A function 𝑓∶ ℍ ⟶ ℂ is a of weight 𝑘 for a congruence subgroup Γ if:

1. 𝑓 is holomorphic on ℍ,

2. 𝑓|𝑘𝛾 = 𝑓 for all 𝛾 ∈ Γ, and

3. 𝑓|𝑘𝛼 is holomorphic at infinity for all 𝛼 ∈ SL2(ℤ).

A function is a of weight 𝑘 for a congruence subgroup Γ if instead of 3 is satisfies:

1. 𝑓|𝑘𝛼 vanishes at infinity for all 𝛼 ∈ SL2(ℤ).

The of weight 𝑘 for a congruence subgroup Γ is written 𝑀𝑘(Γ); the of weight 𝑘 for a congruence
subgroup Γ is written 𝑆𝑘(Γ).

Proposition 2.4. Suppose that 𝑓∶ ℍ ⟶ ℂ satisfies 1 and 2 above. Suppose that 𝑓 is
holomorphic at infinity. That is,

𝑓(𝑧) =
∞

∑
𝑛=0

𝑎(𝑛)𝑞𝑛
𝑁.

Furthermore, suppose that there exists constants 𝐶 > 0 and 𝑟 > 0 such that:

|𝑎(𝑛)| < 𝐶𝑛𝑟, ∀𝑛 > 0.

Then 𝑓 satisfies 3, and thus 𝑓 ∈ 𝑀𝑘(Γ).
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Proof. Exercise.

In fact, the converse is also true: if the Fourier coefficients of 𝑓 grow as 𝐶𝑛𝑟 as above, then
condition 3 in Definition 2.9 is satisfied. The proof of this fact uses Eisenstein series for
congruence subgroups, and thus will be postponed until we introduce those.

Example 2.3. Let 𝑓 be a weakly-modular form of weight 𝑘 for the full modular subgroup.
Consider the function 𝑔(𝑧) = 𝑓(𝑁𝑧). If 𝛾 ∈ Γ0(𝑁) is of the form 𝛾 = ( 𝑎 𝑏

𝑐 𝑑 ), then since 𝑁 ∣ 𝑐
the matrix

𝛾′ = ( 𝑎 𝑏𝑁
𝑐/𝑁 𝑑 )

is in SL2(ℤ). Therefore we may compute:

𝑔(𝛾𝑧) = 𝑓(𝑁(𝛾𝑧)) = 𝑓(𝑁𝑎𝑧 + 𝑏𝑁
𝑐𝑧 + 𝑑

)

= 𝑓( 𝑎(𝑁𝑧) + 𝑏𝑁
𝑐/𝑁(𝑁𝑧) + 𝑑

) = 𝑓(𝛾′(𝑁𝑧))

= (𝑐/𝑁(𝑁𝑧) + 𝑑)𝑘𝑓(𝑁𝑧) = 𝑗(𝛾, 𝑧)𝑘𝑔(𝑧).

Therefore the function 𝑔 is weakly-modular of weight 𝑘 for the congruence subgroup Γ0(𝑁). In
fact, this operation defines injections

𝑀𝑘(SL2(ℤ)) ⟶ 𝑀𝑘(Γ0(𝑁))

which will play an important role later in the course, in the Atkin-Lehner-Li theory of old/new
forms.

We end this section by realizing that the definition of modular forms can be checked by finitely
many computations. Suppose that 𝜎 = 𝛼∞ and 𝜏 = 𝛽∞ are two cusps (here 𝛼 and 𝛽 are in
SL2(ℤ)). Suppose that 𝜎 = 𝛾𝜏 with 𝛾 ∈ Γ.

Proposition 2.5. If

𝑓|𝑘𝛼 =
∞

∑
𝑛=−∞

𝑎(𝑛)𝑞𝑛
ℎ ,

then
𝑓|𝑘𝛽 =

∞
∑

𝑛=−∞
𝑏(𝑛)𝑞𝑛

ℎ , 𝑏(𝑛) = (±1)𝑘𝑒 2𝜋𝑖𝑛𝑗
ℎ 𝑎(𝑛), 𝑗 ∈ ℤ.

Proof. By assumption 𝛼∞ = 𝛾𝛽∞, so 𝛼−1𝛾𝛽∞ = ∞, and therefore since the only matrices
that fix infinity are of the form ± ( 1 𝑗

0 1 ) we have:

𝛼−1𝛾𝛽 = ± (1 𝑗
0 1) , 𝑗 ∈ ℤ.
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This means that
𝛽 = ±𝛾−1𝛼 (1 𝑗

0 1) ,

and therefore:

𝑓|𝑘𝛽 = 𝑓|𝑘 ± 𝐼|𝑘𝛾−1|𝑘𝛼|𝑘 (1 𝑗
0 1) = (±1)𝑘 ∑ 𝑎(𝑛)𝑒 2𝜋𝑖𝑛𝑧

ℎ |𝑘 (1 𝑗
0 1)

= (±1)𝑘 ∑ 𝑎(𝑛)𝑒
2𝜋𝑖𝑛(𝑧+𝑗)

ℎ .

Corollary 2.1. For each 𝑛 ∈ ℤ, we have 𝑎(𝑛) = 0 if and only if 𝑏(𝑛) = 0. In particular, it is
enough to check 3 or 3′ for one representative from each of the equivalence classes of cusps.

2.6 Valence formula for congruence subgroups

Let Γ be a congruence subgroup of level 𝑁. In order to state the next result we need to define
the order of a weakly-modular function at a cusps 𝑃 ∈ Cusps(Γ).

Definition 2.10. Let 𝑓 be a weakly-modular form of weight 𝑘 for Γ, and let 𝑃 be a cusp of Γ
of width ℎΓ(𝑃 ). Since 𝑓(𝑧 + 𝑁) = 𝑓(𝑧), we can write 𝑓 as a Laurent series in 𝑞𝑁 = 𝑒 2𝜋𝑖𝑧

𝑁 , say

𝑓(𝑞𝑁) = ∑
𝑛≥𝑛0

𝑎𝑛𝑞𝑛
𝑁, 𝑎𝑛0

≠ 0.

The of 𝑓 at 𝑃 is 𝑣𝑃(𝑓) = ℎΓ(𝑃)
𝑁 𝑛0.

Here is a generalization of Theorem 1.9 to arbitrary congruence subgroups.

Theorem 2.2. Let Γ be a congruence subgroup, and let 𝑘 be an integer. Let 𝑓 be a non-zero
meromorphic function on ℍ ∪ {∞}, which is weakly-modular of weight 𝑘 for Γ. Then we have

∑
𝑧∈Γ\ℍ

𝑣𝑧(𝑓)
#Γ𝑧

+ ∑
𝑃∈Cusps(Γ)

𝑣𝑃(𝑓) = 𝑘
12

[PSL2(ℤ) ∶ Γ].

Proof. Write 𝑑Γ = [PSL2(ℤ) ∶ Γ], let 𝑅 be a set of coset representatives for Γ\ PSL2(ℤ), and
define 𝐹 = ∏𝛾∈𝑅 𝑓|𝑘𝛾. Note that 𝐹 is weakly-modular of weight 𝑘𝑑Γ for SL2(ℤ), and it is
meromorphic at ∞. By Theorem 1.9 we have

𝑣∞(𝐹) + 1
2

𝑣𝑖(𝐹) + 1
3

𝑣𝜌(𝐹) + ∑
𝑤∈𝑊

𝑣𝑤(𝐹) = 𝑘
12

𝑑Γ.
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Another way to write the above is:

𝑣∞(𝐹) + ∑
𝑧∈PSL2(ℤ)\ℍ

𝑣𝑧(𝐹)
# PSL2(ℤ)𝑧

= 𝑘
12

𝑑Γ.

We may now compute:

𝑣𝑧(𝐹) = ∑
𝛾∈Γ\ PSL2(ℤ)

𝑣𝑧(𝑓|𝑘𝛾) = ∑
𝛾∈Γ\ PSL2(ℤ)

𝑣𝛾𝑧(𝑓) = ∑
𝑤∈Γ\ PSL2(ℤ)𝑧

[PSL2(ℤ)𝑤 ∶ Γ𝑤]𝑣𝑤(𝑓).

The last equality follows by grouping all elements 𝛾 such that 𝛾𝑧 = 𝑤, for each possible 𝑤.
Now, since PSL2(ℤ)𝑤 is finite and independent of 𝑤 ∈ Γ\ PSL2(ℤ)𝑧, we get [PSL2(ℤ)𝑤 ∶ Γ𝑤] =
# PSL2(ℤ)𝑧

#Γ𝑤
. Dividing by # PSL2(ℤ)𝑧 we obtain

𝑣𝑧(𝐹)
# PSL2(ℤ)𝑧

= ∑
𝑤∈Γ\ PSL2(ℤ)𝑧

𝑣𝑤(𝑓)
#Γ𝑤

.

By summing over a set of representatives for PSL2(ℤ)\ℍ we finally obtain

∑
𝑧∈PSL2(ℤ)\ℍ

𝑣𝑧(𝐹)
# PSL2(ℤ)𝑧

= ∑
𝑧∈PSL2(ℤ)\ℍ

∑
𝑤∈Γ\ PSL2(ℤ)𝑧

𝑣𝑤(𝑓)
#Γ𝑤

= ∑
𝑤∈Γ\ℍ

𝑣𝑤(𝑓)
#Γ𝑤

.

In order to conclude the proof it remains to be shown that 𝑣∞(𝐹) = ∑𝑃∈Cusps(Γ) 𝑣𝑃(𝑓). We
first prove it assuming that Γ is normal in PSL2(ℤ). In this case, we have

𝑑Γ𝑣∞(𝐹) = ∑
𝑃∈Cusps(Γ)

ℎΓ(𝑃 )𝑣∞(𝐹)

= ∑
𝑃∈Cusps(Γ)

𝑣𝑃(𝐹)

= ∑
𝑃∈Cusps(Γ)

∑
𝛾∈𝑅

𝑣𝛾𝑃(𝑓)

= ∑
𝑃∈Cusps(Γ)

∑
𝑃 ′∈Cusps(Γ)

#{𝛾 ∈ 𝑅 | 𝛾𝑃 = 𝑃 ′}𝑣𝑃 ′(𝑓)

= ∑
𝑃 ′∈Cusps(Γ)

∑
𝑃∈Cusps(Γ)

#{𝛾 ∈ 𝑅 | 𝛾𝑃 = 𝑃 ′}𝑣𝑃 ′(𝑓)

= 𝑑Γ ∑
𝑃 ′∈Cusps(Γ)

𝑣𝑃 ′(𝑓).

Note that any congruence subgroup Γ contains a subgroup (for instance Γ(𝑁)) which is normal
in SL2(ℤ), and such that it is of finite index. Therefore it is enough to show that, if Γ′ ⊂ Γ
have finite index and 𝑔 is weakly modular of weight 𝑘 for Γ, then

∑
𝑃 ′∈Cusps(Γ′)

𝑣𝑃 ′(𝑓) = 𝑑Γ′

𝑑Γ
∑

𝑃 ′∈Cusps(Γ′)
𝑣𝑃 ′(𝑓).
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Let 𝑃 ∈ Cusps(Γ) and 𝑃 ′ ∈ Cusps(Γ′) be such that [𝑃 ] = [𝑃 ′] inside Cusps(Γ). Pick
𝜎 ∈ SL2(ℤ) such that 𝜎∞ = [𝑃 ] in Cusps(Γ). Write also 𝑛0 = 𝑣Γ

𝑃(𝑔), and 𝑚 = ℎΓ′
ℎΓ

. Then:

(𝑔|𝑘𝜎)(𝑧) = ∑
𝑛≥𝑛0

𝑎𝑛(𝑔)𝑒
2𝜋𝑖𝑛𝑧

ℎΓ = ∑
𝑛≥𝑛0

𝑎𝑛(𝑔)𝑒
2𝜋𝑖𝑛𝑚𝑧

ℎΓ′ = ∑
𝑛≥𝑚𝑛0

𝑎𝑛(𝑔)𝑒
2𝜋𝑖𝑛𝑧

ℎΓ′ .

Hence we have 𝑣𝑃 ′(𝑔) = 𝑚𝑣𝑃(𝑔), as we wanted. This concludes the proof of the valence
formula.

As for level 1, the valence formula gives a criterion for equality of modular forms:

Corollary 2.2. Let 𝑓 and 𝑔 be two modular forms in 𝑀𝑘(Γ), whose 𝑞-expansions (at one cusp
of Γ) coincide up to the term 𝑘

12 [PSL2(ℤ) ∶ Γ]. Then 𝑓 and 𝑔 are equal.

There are dimension formulas for congruence subgroups (see [3, Chapter 3]) but we will not see
them in this course.
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3 Moduli interpretation

In this chapter we reinterpret modular forms as functions on certain very interesting geometric
objects.

3.1 Lattices and tori

Definition 3.1. A is a free ℤ-module Λ of rank 2 inside ℂ which contains an ℝ-basis for ℂ.
Concretely, Λ = ℤ𝜔1 ⊕ ℤ𝜔2, where 𝜔1 and 𝜔2 are ℝ-linearly independent complex numbers. We
will always assume that 𝜔1/𝜔2 ∈ ℍ, which can always be accomplished by possible swapping
them.

As you know, in general there are many choices for a basis of a given submodule.

Proposition 3.1. Suppose that Λ = ⟨𝜔1, 𝜔2⟩ and Λ′ = ⟨𝜔′
1, 𝜔′

2⟩. Then Λ = Λ′ if and only if
there exists 𝛾 ∈ SL2(ℤ) such that

(𝜔1
𝜔2

) = 𝛾 (𝜔′
1

𝜔′
2
) .

Proof. Exercise.

Lattices become interesting when we quotient ℂ out by them.

Definition 3.2. A is the set ℂ/Λ = {𝑧 + Λ | 𝑧 ∈ ℂ}. It has the structure of an abelian group,
and analytically it is a torus (a genus one Riemann surface).

Proposition 3.2. Suppose that 𝜑∶ ℂ/Λ ⟶ ℂ/Λ′ is a holomorphic map. Then there exist
complex numbers 𝑚 and 𝑏 such that:

1. 𝑚Λ ⊆ Λ′, and

2. 𝜑(𝑧 + Λ) = 𝑚𝑧 + 𝑏 + Λ′.

Moreover, 𝜑 is invertible if and only if 𝑚Λ = Λ′.
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Figure 3.1: A torus

Proof. The complex plane ℂ is the universal covering space of ℂ/Λ and ℂ/Λ′. Therefore, 𝜑
can be lifted to a map �̃� ∶ ℂ ⟶ ℂ. Suppose now that 𝜆 ∈ Λ, and define

𝑓𝜆(𝑧) = �̃�(𝑧 + 𝜆) − �̃�(𝑧).

Then 𝑓𝜆 is continuous and has image in Λ′. Since Λ′ is discrete, necessarily 𝑓𝜆 is constant.
Consider the derivative. For each 𝜆 ∈ Λ, we have

�̃�′(𝑧 + 𝜆) = �̃�′(𝑧).

Therefore �̃�′(𝑧) is holomorphic and doubly-periodic, hence bounded. By Liouville’s theorem,
�̃�′ is constant. We deduce that �̃�(𝑧) = 𝑚𝑧 + 𝑏, as wanted.

Corollary 3.1. Let 𝜑∶ ℂ/Λ ⟶ ℂ/Λ′ be a holomorphic map. Then 𝜑 is a group homomorphism
if and only if 𝜑(0) = 0, if and only if 𝑏 ∈ Λ′.

If 𝜑 as above is a holomorphic group isomorphism, then necessarily 𝑚Λ = Λ′ and also
𝜑(𝑧 + Λ) = 𝑚𝑧 + Λ′.

Here are two examples of possible maps like the ones above.

Example 3.1. The map , usually written [𝑁], is a homomorphism

ℂ/Λ ⟶ ℂ/Λ

which maps the class 𝑧 + Λ to 𝑁𝑧 + Λ. The kernel of [𝑁] is the group of 𝑁-torsion points,
isomorphic to ℤ/𝑁ℤ × ℤ/𝑁ℤ.
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π
π′

ϕ ◦ π

ϕ

ϕ̃

C/Λ C/Λ′

Figure 3.2: Lifting to the universal covering space

Example 3.2. Consider Λ = ℤ𝜔1 ⊕ ℤ𝜔2. Define 𝜏 = 𝜔1/𝜔2 ∈ ℍ, and set Λ𝜏 = ℤ𝜏 ⊕ ℤ. Then
ℂ/Λ ≅ ℂ/Λ𝜏.

The previous example can be brought a little bit further as follows.

Lemma 3.1. The complex tori ℂ/Λ𝜏 and ℂ/Λ𝜏′ are isomorphic if and only if 𝜏 = 𝛾𝜏 ′ for
some 𝛾 ∈ SL2(ℤ).

Proof. Suppose that

𝜏 = 𝛾𝜏 ′ = 𝑎𝜏 ′ + 𝑏
𝑐𝜏 ′ + 𝑑

.

Let 𝑚 = 𝑐𝜏 ′ + 𝑑. Then 𝑚Λ𝜏 = ℤ(𝑎𝜏 ′ + 𝑏) ⊕ ℤ(𝑐𝜏 ′ + 𝑑). By Proposition Proposition 3.1, this
lattice is the same as ℤ𝜏 ′ ⊕ ℤ = Λ𝜏′ . The other direction is obtained by reading the equalities
in reverse.

We have just seen that there is a “natural bijection” between isomorphism classes of tori and
elements 𝜏 ∈ SL2(ℤ)\ℍ. This innocent statement is really important.

Example 3.3. Let Λ be a lattice. Define, for 𝑘 > 2 even,

𝐺𝑘(Λ) = ∑ ′

𝜔∈Λ
𝜔−𝑘.
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Note that 𝐺𝑘(Λ𝜏) = 𝐺𝑘(𝜏) is the usual Eisenstein series defined in the previous chapter. The
transformation law reads in this case:

𝐺𝑘(𝑚Λ) = 𝑚−𝑘𝐺𝑘(Λ).

3.2 Tori and elliptic curves

The next goal is to relate ℂ/Λ to elliptic curves. This will allow to think of modular forms as
functions either on lattices or on elliptic curves.

3.2.1 Meromorphic functions on ℂ/Λ

Let ℂ(Λ) be the field of meromorphic functions on ℂ/Λ. That is, meromorphic functions
𝑓∶ ℂ ⟶ ℂ satisfying 𝑓(𝑧 + 𝜆) = 𝑓(𝑧) for all 𝜆 ∈ Λ.

Proposition 3.3. Let 𝑓 ∈ ℂ(Λ). Then:

1. ∑𝑧∈ℂ/Λ res𝑧𝑓 = 0.

2. ∑𝑧∈ℂ/Λ ord𝑧 𝑓 = 0.

3. ∑𝑧∈ℂ/Λ 𝑧 ord𝑧 𝑓 ∈ Λ.

Proof. Consider a fundamental parallelepiped 𝐷 which misses all zeroes and poles. This can
be done because zeroes and poles form a discrete set. Now one can compute the quantities

1
2𝜋𝑖

∫
𝜕𝐷

𝑓(𝑧)𝑑𝑧, 1
2𝜋𝑖

∫
𝜕𝐷

𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 , and 1
2𝜋𝑖

∫
𝜕𝐷

𝑧𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧.

Definition 3.3. The 𝑓 is the number ord(𝑓) of zeroes (which equals the number of poles) of 𝑓,
when counted with multiplicities.

Note that the first statement in the above proposition implies that ord(𝑓) ≥ 2.
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3.2.2 The Weierstrass ℘-function

Consider the following function:

℘Λ(𝑧) = 1
𝑧2 + ∑ ′

𝑤∈Λ
( 1

(𝑧 − 𝑤)2 − 1
𝑤2 ) .

It is immediate to see that ℘Λ is an even function, which converges absolutely and uniformly
on compact sets away from Λ.

Lemma 3.2. The function ℘Λ is Λ-periodic.

Proof. Note that the derivative of ℘Λ is

℘′
𝜆(𝑧) = −2 ∑

𝑤∈Λ

1
(𝑧 − 𝑤)3 ,

which is clearly Λ-periodic. Set 𝑓(𝑧) = ℘Λ(𝑧 + 𝑤1) − ℘Λ(𝑧), where 𝑤1 ∈ Λ. Then 𝑓 ′(𝑧) = 0, so
𝑓 is constant, say 𝑓(𝑧) = 𝑐. To determine 𝑐, set 𝑧 = −𝑤

2 and note that since ℘Λ is even, we get

𝑐 = ℘Λ(𝑤1/2) − ℘Λ(−𝑤1/2) = 0.

Therefore 𝑓(𝑧) = 0, and thus ℘Λ is Λ-periodic.

The lemma gives that ℘𝜆(𝑧) belongs to ℂ(Λ). In fact, ℂ(Λ) is generated by ℘Λ and ℘′
Λ, but we

are not going to prove this here.

Proposition 3.4. The Laurent expansion of ℘Λ(𝑧) at 𝑧 = 0 is

℘Λ(𝑧) = 1
𝑧2 + ∑

𝑛≥2, even
(𝑛 + 1)𝐺𝑛+2(Λ)𝑧𝑛,

and it has radius of convergence equal to the lattice point closest to the origin.

Proof. See [3, Proposition 1.4.1].

These expansions allow us to find algebraic relations between ℘Λ and ℘′
Λ. Since

℘Λ = 1
𝑧2 + 3𝐺4(Λ)𝑧2 + 𝑂(𝑧4)

and
℘′

Λ = −2
𝑧3 + 6𝐺4(Λ)𝑧 + 𝑂(𝑧3),
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we deduce:
(℘′

Λ)2 = 4
𝑧6 + 𝑂(𝑧−2) = 4(℘Λ)3 + 𝑂(𝑧−2).

We can work with a couple more terms of the expansions, to get:

(℘′
Λ)2 = 4(℘Λ)3 − 60𝐺4(Λ)℘Λ − 140𝐺6(Λ) + 𝐹(𝑧), 𝐹 (𝑧) = 𝑂(𝑧2).

Finally, note that 𝐹(𝑧) is Λ-periodic so by Liouville’s theorem it must be constant 0.

Proposition 3.5. Let 𝑔2(Λ) = 60𝐺4(Λ) and 𝑔3(Λ) = 140𝐺6(Λ). Then:

1. The point (℘Λ(𝑧), ℘′
Λ(𝑧)) lies on the elliptic curve

𝐸Λ ∶ 𝑌 2 = 4𝑋3 − 𝑔2(Λ)𝑋 − 𝑔3(Λ).

2. 𝐸Λ can be written as 𝑌 2 = 4(𝑋 − 𝑒1)(𝑋 − 𝑒2)(𝑋 − 𝑒3), where

𝑒𝑖 = ℘Λ(𝑤𝑖/2), 𝑤3 = 𝑤1 + 𝑤2.

Moreover, this equation is nonsingular (that is, the 𝑒𝑖 are all distinct).

Proof. It only remains to prove the second statement. Since ℘′
Λ is odd and periodic, we get:

℘′
Λ(𝑤𝑖/2) = ℘′

Λ(−𝑤𝑖/2) = −℘′
Λ(𝑤𝑖/2),

so ℘′
Λ(𝑤𝑖/2) is 0. Since ℘Λ takes the value 𝑒𝑖 twice and ℘Λ has degree 2, it does not take the

value 𝑒𝑖 at any other points outside the 2-torsion.

e2

e1

e3 = e1 + e2

w2

w10

Figure 3.3: The 2-torsion points of 𝐸Λ

To summarize, what we have found is that there is a holomorphic map:

ℂ/Λ ⟶ 𝐸Λ, 𝑧 + Λ ↦ (℘Λ(𝑧), ℘′
Λ(𝑧)),

and this map is indeed a bijection: if 𝑥 ∈ ℂ is any complex number, then ℘Λ takes the value 𝑥
twice, since ℘Λ(±𝑧 + Λ) = 𝑥. Therefore we get two 𝑦-values unless 𝑦 = 0 (which happens only
when 𝑧 = 𝑤𝑖/2). In this case, ℘Λ(𝑧) = 𝑒𝑖, and ℘Λ(𝑧) takes the value 𝑒𝑖 “twice” at 𝑧.

The following result is crucial:
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Theorem 3.1. If 𝐸∶ 𝑌 2 = 4𝑋3 − 𝑔2𝑋 − 𝑔3 is any elliptic curve, then there exists some lattice
Λ such that 𝑔2(Λ) = 𝑔2 and 𝑔4(Λ) = 𝑔4.

Proof. It uses that 𝑗(𝑧) is surjective. See [3, Proposition 1.4.3]

1. For 𝜏 ∈ ℍ, consider the elliptic curve 𝐸𝜏 = 𝐸Λ𝜏
.

𝐸𝜏 ∶ 𝑌 2 = 4𝑋3 − 𝑔2(𝜏)𝑋 − 𝑔3(𝜏).

One can compute that the discriminant of the cubic polynomial on 𝑋 that is the right-hand
side is

Δ̃(𝜏) = 1
16

(𝑔2(𝜏)3 − 27𝑔3(𝜏)2),

which equals (2𝜋)12

16 Δ(𝜏), where Δ(𝜏) is the modular form already studied in

1.

2. The map ℂ/Λ ⟶ 𝐸Λ is a group homomorphism. Or if we prefer, we may define the
group structure on 𝐸Λ via transport of structure.

3.2.3 Moduli space interpretation

Consider the set 𝑆 of isomorphism classes of elliptic curves. Every elliptic curve is isomorphic
to ℂ/Λ for some lattice Λ, and in fact it is isomorphic to ℂ/Λ𝜏 for some 𝜏 ∈ ℍ. Moreover,

ℂ/Λ𝜏 ≅ ℂ/Λ𝜏′ ⟺ SL2(ℤ)𝜏 = SL2(ℤ)𝜏 ′.

Therefore there is a natural bijection

𝑆 ⟷ SL2(ℤ)\ℍ, [ℂ/Λ𝜏] ↦ SL2(ℤ)𝜏.

The quotient SL2(ℤ)\ℍ is called the for isomorphism classes of elliptic curves.

Let now 𝑓 ∈ 𝑀𝑘(SL2(ℤ)) be a modular form of weight 𝑘. Define the following function 𝐹 on
the set of complex tori:

𝐹(ℂ/Λ𝜏) = 𝑓(𝜏).

This is well defined, because if Λ𝜏 = Λ𝜏′ then 𝜏 = 𝜏 ′ + 𝑏 for some 𝑏 ∈ ℤ, and 𝑓(𝜏 + 𝑏) = 𝑓(𝜏).
Moreover, suppose that 𝑚Λ𝜏 = Λ𝜏′ . Then

𝜏 = (𝑎 𝑏
𝑐 𝑑) 𝜏 ′, 𝑚 = 𝑐𝜏 ′ + 𝑑.

Then we may compute:

𝐹(ℂ/𝑚Λ𝜏) = 𝐹(ℂ/Λ𝜏′) = 𝑓(𝜏 ′) = (𝑐𝜏 ′ + 𝑑)−𝑘𝑓(𝜏) = 𝐹(ℂ/Λ𝜏)𝑚−𝑘.
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From this we deduce that
𝐹(ℂ/𝑚Λ) = 𝑚−𝑘𝐹(ℂ/Λ).

We could thus define modular forms as functions on complex tori satisfying the above relations.
This prototype can be pushed to work for other congruence subgroups, although isomorphism
classes of elliptic curves will have to be replaced by objects carrying more data.

3.3 Moduli interpretation for Γ0(𝑁) and Γ1(𝑁)

We will write 𝐸[𝑁] for the 𝑁-torsion in 𝐸 = ℂ/Λ, which is isomorphic to ℤ/𝑁ℤ × ℤ/𝑁ℤ.

w2

w1

Figure 3.4: The 8-torsion of a complex torus ℂ/(ℤ𝑤1 + ℤ𝑤2).

In order to give a moduli interpretation for modular forms on Γ0(𝑁), we need to add more
structure to the elliptic curves (or complex tori) that we consider.

Definition 3.4. An for Γ0(𝑁) is a pair (𝐸, 𝐶), where 𝐸 is an elliptic curve and 𝐶 is a cyclic
subgroup of order 𝑁 in 𝐸[𝑁]. Two enhanced elliptic curves (𝐸, 𝐶) and (𝐸′, 𝐶′) are equivalent
if there exists an isomorphism 𝜑∶ 𝐸

≃
⟶ 𝐸′ such that 𝜑(𝐶) = 𝐶′.

We write 𝑆0(𝑁) for the set of equivalence classes of enhanced elliptic curves.

Theorem 3.2. With the above notation,

1. Each class in 𝑆0(𝑁) has a representative of the form (ℂ/Λ𝜏, ⟨ 1
𝑁 + Λ𝜏⟩), for some 𝜏 ∈ ℍ.

2. Two pairs (ℂ/Λ𝜏, ⟨ 1
𝑁 +Λ𝜏⟩) and (ℂ/Λ𝜏′ , ⟨ 1

𝑁 +Λ𝜏′⟩) are equivalent if and only if Γ0(𝑁)𝜏 =
Γ0(𝑁)𝜏 ′. Therefore the map 𝜏 ↦ (ℂ/Λ𝜏, ⟨ 1

𝑁 + Λ𝜏⟩) induces a bijection of 𝑌0(𝑁) =
Γ0(𝑁)\ℍ ≅ 𝑆0(𝑁).
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Proof. Consider an enhanced elliptic curve (ℂ/Λ, 𝐶). We have already seen that there is an
isomorphism 𝜑∶ ℂ/Λ ≅ ℂ/Λ𝜏′ for some 𝜏 ′ ∈ ℍ. Since 𝐶 is cyclic of order 𝑁, the same is
true for 𝜑(𝐶). Therefore (ℂ/Λ, 𝐶) is equivalent to (ℂ/Λ𝜏′ , ⟨ 𝑐𝜏′+𝑑

𝑁 + Λ𝜏′⟩) for some integers
𝑐 and 𝑑 coprime to each other and to 𝑁. Since reduction modulo 𝑁 gives a surjection
SL2(ℤ) ↠ SL2(ℤ/𝑁/𝑍𝑍), one can find a matrix

𝛾 = (𝑎′ 𝑏′

𝑐′ 𝑑′) ∈ SL2(ℤ),

such that 𝑐′ ≡ 𝑐 (mod 𝑁) and 𝑑′ ≡ 𝑑 (mod 𝑁). Set now 𝜏 = 𝛾𝜏 ′ and 𝑚 = 𝑐′𝜏 ′ + 𝑑′, so
𝑚Λ𝜏 = Λ𝜏′ and, as we wanted to show,

𝑚 ( 1
𝑁

+ Λ𝜏) = 𝑐′𝜏 ′ + 𝑑′

𝑁
+ Λ𝜏′ = 𝑐𝜏 ′ + 𝑑

𝑁
+ Λ𝜏′ , .

As for the second part, for an isomorphism between ℂ/Λ𝜏 and ℂ/Λ𝜏′ to exist there needs to
exist 𝛾 = ( 𝑎 𝑏

𝑐 𝑑 ) ∈ SL2(ℤ) such that

(𝑐𝜏 ′ + 𝑑)Λ𝜏 = Λ𝜏′ .

Moreover, for the corresponding isomorphism to respect the cyclic subgroups one needs to have

⟨(𝑐𝜏 ′ + 𝑑)( 1
𝑁

+ Λ𝜏)⟩ = ⟨ 1
𝑁

+ Λ𝜏′⟩.

That is, 𝛾 satisfies

⟨𝑐𝜏 ′ + 𝑑
𝑁

+ Λ𝜏′⟩ = ⟨ 1
𝑁

+ Λ𝜏′⟩,

which is equivalent to 𝑁 ∣ 𝑐 (and then 𝑑 is necessarily coprime to 𝑁). This last condition is
precisely saying that 𝛾 must belong to Γ0(𝑁).

In this context, one may define a weight-𝑘 homogeneous function 𝐹 for Γ0(𝑁) as a function on
enhanced elliptic curves for Γ0(𝑁) such that

𝐹((ℂ/𝑚Λ, 𝑚𝐶) = 𝑚−𝑘𝐹(ℂ/Λ, 𝐶), ∀𝑚 ∈ ℂ.

Given such an 𝐹, one can define 𝑓(𝜏) = 𝐹(ℂ/Λ𝜏, ⟨ 1
𝑁 + Λ𝜏⟩) and check that 𝑓(𝜏) is weakly

modular of weight 𝑘 for Γ0(𝑁).

We have a similar construction for Γ1(𝑁).

Definition 3.5. An for Γ1(𝑁) is a pair (𝐸, 𝑃 ), where 𝐸 is an elliptic curve and 𝑃 is a point
of exact order 𝑁 in 𝐸[𝑁]. Two enhanced elliptic curves (𝐸, 𝑃 ) and (𝐸′, 𝑃 ′) are equivalent if
there exists an isomorphism 𝜑∶ 𝐸

≃
⟶ 𝐸′ such that 𝜑(𝑃) = 𝑃 ′.

We write 𝑆1(𝑁) for the set of equivalence classes of enhanced elliptic curves for Γ1(𝑁).
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Theorem 3.3. With the above notation,

1. Each class in 𝑆1(𝑁) has a representative of the form (ℂ/Λ𝜏, 1
𝑁 + Λ𝜏), for some 𝜏 ∈ ℍ.

2. Two pairs (ℂ/Λ𝜏, 1
𝑁 + Λ𝜏) and (ℂ/Λ𝜏′ , 1

𝑁 + Λ𝜏′) are equivalent if and only if Γ1(𝑁)𝜏 =
Γ1(𝑁)𝜏 ′. Therefore the map 𝜏 ↦ (ℂ/Λ𝜏, 1

𝑁 + Λ𝜏) induces a bijection of 𝑌1(𝑁) =
Γ1(𝑁)\ℍ ≅ 𝑆1(𝑁).

Proof. Let (𝐸, 𝑄) be any point in 𝑆1(𝑁). Since 𝐸 is isomorphic to ℂ/Λ𝜏′ for some 𝜏 ′ ∈ ℍ, we
may take 𝐸 = ℂ/Λ𝜏′ , and hence 𝑄 = (𝑐𝜏 ′ + 𝑑)/𝑁 + Λ𝜏′ for some 𝑐, 𝑑 ∈ ℤ. The fact that the
order of 𝑄 is exactly 𝑁 means that gcd(𝑐, 𝑑, 𝑁) = 1, and therefore there exists 𝑎, 𝑏, 𝑘 ∈ ℤ such
that

𝑎𝑑 − 𝑏𝑐 − 𝑘𝑁 = 1.

Note that this means that the matrix ( 𝑎 𝑏
𝑐 𝑑 ) has determinant 1 (mod 𝑁). Using that SL2(ℤ)

surjects into SL2(ℤ/𝑁ℤ) and the fact that 𝑐 and 𝑑 only matter modulo 𝑁, we find a matrix
𝛾 ∈ SL2(ℤ) with lower low (𝑐, 𝑑). Let 𝜏 = 𝛾𝜏 ′, and let 𝑚 = 𝑐𝜏 ′ + 𝑑. Then we obtain
𝑚𝜏 = 𝑎𝜏 ′ + 𝑏, which implies that 𝑚Λ𝜏 = Λ𝜏′ . Moreover,

𝑚 (1/𝑁 + Λ𝜏) = 𝑐𝜏 ′ + 𝑑
𝑁

+ Λ𝜏′ = 𝑄.

Therefore the class [𝐸, 𝑄] is the same as [ℂ/Λ𝜏, 1/𝑁 + Λ𝜏].

Finally, given two points 𝜏, 𝜏 ′ ∈ ℍ such that Γ1(𝑁)𝜏 = Γ1(𝑁)𝜏 ′, we may write 𝜏 = 𝛾𝜏 ′ for
some 𝛾 = ( 𝑎 𝑏

𝑐 𝑑 ) ∈ Γ1(𝑁). Letting 𝑚 = 𝑐𝜏 ′ + 𝑑, then:

𝑚Λ𝜏 = Λ𝜏′ , 𝑚 (1/𝑁 + Λ𝜏) = 𝑐𝜏 ′ + 𝑑
𝑁

+ Λ𝜏′ .

Since (𝑐, 𝑑) ≡ (0, 1) (mod 𝑁), the last term is just 1/𝑁 + Λ𝜏′ , as we wanted to show.

Moreover, note that there is a natural map 𝑆1(𝑁) ⟶ 𝑆0(𝑁), which sends the class of (𝐸, 𝑃 )
to that of (𝐸, ⟨𝑃 ⟩).

There is a moduli space description of Γ(𝑁)\ℍ which classifies pairs of an elliptic curve 𝐸 with
a basis for 𝐸[𝑁], but its precise description requires the Weil pairing, which we have not seen
in this course.
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4 Hecke Theory

4.1 Double coset operators

Let Γ1 and Γ2 be two congruence subgroups, and let 𝛼 ∈ GL+
2 (ℚ).

Definition 4.1. The Γ1𝛼Γ2 is the set

Γ1𝛼Γ2 = {𝛾1𝛼𝛾2 | 𝛾1 ∈ Γ1, 𝛾2 ∈ Γ2}.

Multiplication gives a left action of Γ1 on Γ1𝛼Γ2 and another right action of Γ2. Consider a
decomposition of this double coset into (disjoint) orbits:

Γ1𝛼Γ2 = ∪Γ1𝛽𝑗.

Lemma 4.1.

1. If Γ is a congruence subgroup and 𝛼 ∈ GL+
2 (ℚ), then 𝛼−1Γ𝛼 ∩ SL2(ℤ) is also congruence

subgroup.

2. Any two congruence subgroups Γ1, Γ2 are . That is,

[Γ1 ∶ Γ1 ∩ Γ2] < ∞ and [Γ2 ∶ Γ1 ∩ Γ2] < ∞.

Proof. Let 𝑁 be a positive integer such that Γ(𝑁) ⊆ Γ, 𝑁𝛼 ∈ 𝑀2(ℤ) and 𝑁𝛼−1 ∈ 𝑀2(ℤ). Set
𝑀 = 𝑁3. Then one can check that 𝛼Γ(𝑀)𝛼−1 ⊆ Γ(𝑁), which implies that Γ(𝑀) ⊆ 𝛼−1Γ𝛼.
Since Γ(𝑀) is also contained in SL2(ℤ), we are done with the first statement.

For the second assertion, just note that there is some 𝑀 such that Γ(𝑀) ⊆ Γ1 ∩ Γ2. Therefore
the indices to compute are bounded above by [SL2(ℤ) ∶ Γ(𝑀)], which is finite.

Proposition 4.1. Let Γ1 and Γ2 be two congruence subgroups, and let 𝛼 ∈ GL+
2 (ℚ). Set Γ3 to

be the congruence subgroup:
Γ3 = (𝛼−1Γ1𝛼) ∩ Γ2.

The map 𝛾2 ↦ Γ1𝛼𝛾2 induces a bijection

Γ3\Γ2 ≅ Γ1\Γ1𝛼Γ2.
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Proof. Consider the map

Γ2 ⟶ Γ1\(Γ1𝛼Γ2), 𝛾2 ↦ Γ1𝛼𝛾2.

It is clearly surjective. Moreover, two elements 𝛾2 and 𝛾′
2 get mapped to the same orbit if and

only if:
Γ1𝛼𝛾2 = Γ1𝛼𝛾′

2 ⟺ 𝛾′
2𝛾−1

2 ∈ 𝛼−1Γ1𝛼,

and the latter happens if and only if 𝛾2 and 𝛾′
2 are in the same coset for (𝛼−1Γ1𝛼)∩Γ2 = Γ3.

Corollary 4.1. Let Γ2 = ∪Γ3𝛾𝑗 be a coset decomposition of Γ3\Γ2. Then

Γ1𝛼Γ2 = ∪Γ1𝛼𝛾𝑗

is an orbit decomposition. In particular, the number of orbits of Γ1𝛼Γ2 under the action of Γ1
is finite.

Let 𝑓 ∈ 𝑀𝑘(Γ1) be a modular form of weight 𝑘 for a congruence subgroup Γ1. Let Γ1𝛼Γ2 be a
double coset, where Γ2 is a congruence subgroup and 𝛼 ∈ GL+

2 (ℚ). The on 𝑓 is defined as:

𝑓|𝑘(Γ1𝛼Γ2) = ∑ 𝑓|𝑘𝛽𝑗,

if Γ1𝛼Γ2 = ∪Γ1𝛽𝑗 is any orbit decomposition.

The action is well defined, independent of the choice of the 𝛽𝑗. This is so because 𝑓 is 𝑘-invariant
under Γ1.

The next goal is to show that the double coset operator maps 𝑀𝑘(Γ1) to 𝑀𝑘(Γ2) and preserves
cusps forms. We will need a technical lemma to treat the cusp conditions.

Lemma 4.2. Suppose that for all 𝛾 ∈ SL2(ℤ) the function 𝑓|𝑘𝛾 has an expansion of the form

∑
𝑛≥𝑛0

𝑎(𝑛)𝑞𝑛
𝑁,

with 𝑛0 and 𝑎(𝑛) depending on 𝛾. Let 𝛼 ∈ GL+
2 (ℚ). Then for all 𝛾 ∈ SL2(ℤ) the function

𝑓|𝑘(𝛼𝛾) has the expansion
∑

𝑛≥𝑎𝑛0

𝑏(𝑛)𝑞𝑛
𝑁𝑑,

where 𝑎 and 𝑑 are positive integers depending only on 𝛼.

Proof. First, note that, for 𝑎 > 0,

𝑓|𝑘 (𝑎 0
0 𝑎) = 𝑎2(𝑘−1)𝑎−𝑘𝑓 = 𝑎𝑘−2𝑓.
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So without loss of generality we may assume that 𝛼 ∈ 𝑀2(ℤ). Let 𝛾0 ∈ SL2(ℤ) be such that
𝛾−1

0 𝛼 = ( 𝑎 𝑏
0 𝑑 ) (upper-triangular), with 𝑎 and 𝑑 being positive integers. Then:

𝑓|𝑘𝛼 = (𝑓|𝑘𝛾0)|𝑘 (𝑎 𝑏
0 𝑑) = ( ∑

𝑛≥𝑛0

𝑎(𝑛)𝑒 2𝜋𝑖𝑛𝑧
𝑁 ) |𝑘 (𝑎 𝑏

0 𝑑)

= (⋯) ∑
𝑛≥𝑛0

𝑎(𝑛)𝑒
2𝜋𝑖𝑛(𝑎𝑧+𝑏)

𝑑𝑁 = (⋯)𝑞𝑎𝑛0
𝑁𝑑 + ⋯

This concludes the proof.

Proposition 4.2. Let Γ1 and Γ2 be two congruence subgroups, and let 𝛼 ∈ GL+
2 (ℚ). The rule

𝑓 ↦ 𝑓|𝑘Γ1𝛼Γ2 induces a map 𝑀𝑘(Γ1) ⟶ 𝑀𝑘(Γ2).

Proof. Write Γ3 = (𝛼−1Γ1𝛼) ∩ Γ2, and consider a coset decomposition Γ2 = ∪Γ3𝛾𝑗. One
can take as set of representatives 𝛽𝑗 = 𝛼𝛾𝑗. If 𝛾2 ∈ Γ2, then {𝛾𝑗𝛾2}𝑗 is a complete set of
representatives for Γ3\Γ2, and hence {𝛼𝛾𝑗𝛾2}𝑗 is a complete set of representatives for Γ1\Γ1𝛼Γ2.
This implies that 𝑓|𝑘Γ1𝛼Γ2 is 𝑘-invariant for Γ2.

If 𝑓 is holomorphic on ℍ, then 𝑓|𝑘𝛽𝑗 is holomorphic on ℍ for any 𝛽𝑗 ∈ GL+
2 (ℚ), so it only remains

to check the cusp conditions. But Lemma 4.2 precisely ensures that these are preserved.

4.1.1 First examples

Consider the case Γ2 ⊆ Γ1 and 𝛼 = 1. Then Γ1𝛼Γ2 = Γ1, and Γ1 = Γ11 is an orbit
decomposition. Therefore 𝑓|𝑘Γ1𝛼Γ2 = 𝑓|𝑘1 = 𝑓. This just says that 𝑀𝑘(Γ1) is a subspace of
𝑀𝑘(Γ2).

As a more interesting example, given 𝛼 ∈ GL+
2 (ℚ) consider the conjugate Γ′ = 𝛼−1Γ𝛼. Then

Γ𝛼Γ′ = Γ𝛼 is an orbit decomposition. This implies that acting by 𝛼 induces a map

𝑀𝑘(Γ) ⟶ 𝑀𝑘(𝛼−1Γ𝛼).

Since the inverse of this map is given by the action of 𝛼−1, we conclude that 𝑀𝑘(Γ) and
𝑀𝑘(𝛼−1Γ𝛼) are naturally isomorphic.

Finally, consider the case Γ1 ⊆ Γ2 and 𝛼 = 1. Then Γ1𝛼Γ2 = ∪Γ1𝛽𝑗, where 𝛽𝑗 is a set of coset
representatives for Γ1\Γ2. The map

𝑓 ↦ ∑
𝑗

𝑓|𝑘𝛽𝑗

is to be seen as a trace operator from 𝑀𝑘(Γ1) ⟶ 𝑀𝑘(Γ2). In particular, it maps 𝑓 ∈ 𝑀𝑘(Γ2)
to [Γ2 ∶ Γ1]𝑓 and thus it is surjective.
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4.2 Hecke operators for Γ1(𝑁)

Fix now Γ = Γ1(𝑁). We will describe the Hecke operators for the group Γ.

4.2.1 The 𝑇𝑝 operators

Let 𝑝 be a prime. The at 𝑝 is defined as:

𝑇𝑝𝑓 = 𝑓|𝑘Γ1(𝑁) (1 0
0 𝑝) Γ1(𝑁).

By Proposition 4.2, the operator 𝑇𝑝 acts on 𝑀𝑘(Γ1(𝑁)).

In order to describe the action of 𝑇𝑝 more precisely, we need to understand the double coset
Γ1(𝑁) ( 1 0

0 𝑝 ) Γ1(𝑁). Note first that if 𝛾 ∈ Γ1(𝑁) ( 1 0
0 𝑝 ) Γ1(𝑁) then:

1. det 𝛾 = 𝑝, and

2. 𝛾 ≡ ( 1 ∗
0 𝑝 ) (mod 𝑁).

In fact, the converse is true:

Lemma 4.3. We have that

Γ1(𝑁) (1 0
0 𝑝) Γ1(𝑁) = {𝛾 ∈ 𝑀2(ℤ) | det 𝛾 = 𝑝, 𝛾 ≡ ( 1 ∗

0 𝑝 ) (mod 𝑁)} .

Proof. To prove the remaining inclusion, let 𝛾 ∈ 𝑀2(ℤ) have determinant 𝑝, and satisfy
𝛾 ≡ ( 1 ∗

0 𝑝 ) (mod 𝑁). Consider 𝐿 = ℤ2 and

𝐿0 = 𝐿0(𝑁) = {( 𝑥
𝑦 ) ∈ 𝐿∶ 𝑦 ≡ 0 (mod 𝑁)}.

Note that 𝛾𝐿0 ⊆ 𝐿0. Since det 𝛾 = 𝑝 > 0, we have:

[𝐿∶ 𝛾𝐿0] = [𝐿∶ 𝐿0][𝐿0 ∶ 𝛾𝐿0] = 𝑁𝑝.

Choose a basis of 𝐿 adapted to 𝛾𝐿0. That is, a basis 𝑢, 𝑣 such that det(𝑢|𝑣) = 1 and such that

𝛾𝐿0 = 𝑚𝑢ℤ ⊕ 𝑛𝑣ℤ, with 0 < 𝑚 ∣ 𝑛, 𝑚𝑛 = 𝑁𝑝.

We will show:

1. 𝛾𝐿0 = 𝑢ℤ ⊕ 𝑁𝑝𝑣ℤ.

2. 𝐿0 = 𝑢ℤ ⊕ 𝑁𝑣ℤ.

3. 𝛾𝐿 = 𝑢ℤ + 𝑝𝑣ℤ.
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In fact, since 𝛾 ( 1
0 ) ∈ 𝛾𝐿0, we have that ( 𝑎

𝑏 ) ≡ ( 0
0 ) (mod 𝑚). Since gcd(𝑎, 𝑁) = 1, this implies

that gcd(𝑚, 𝑁) = 1. Now, if 𝑝 ∣ 𝑚, then 𝑝 ∣ 𝑛, and so 𝑝2 ∣ 𝑚𝑛 = 𝑁𝑝. Therefore 𝑝 ∣ 𝑁, which is
a contradiction with gcd(𝑚, 𝑁) = 1. Therefore 𝑝 ∤ 𝑚 and hence 𝑚 = 1 and 𝑛 = 𝑁𝑝.

The two other facts follow because 𝐿0 ⊂ 𝐿 is a subgroup of index 𝑁, and 𝛾𝐿 ⊂ 𝐿 is of index 𝑝
in 𝐿. This proves the above three statements.

Next, set 𝛾1 = (𝑢|𝑣), which belongs to Γ0(𝑁) because 𝑢 belongs to 𝐿0. Set also 𝛾2 =
(𝛾1 ( 1 0

0 𝑝 ))−1𝛾, so that 𝛾 = 𝛾1 ( 1 0
0 𝑝 ) 𝛾2. Note that 𝛾2 belongs to SL2(ℚ). It remains to show

that 𝛾1 and 𝛾2 belong to Γ1(𝑁). This will follow if we can prove:

1. 𝛾2 ∈ Γ0(𝑁).

2. Γ0(𝑁) ( 1 0
0 𝑝 ) Γ0(𝑁) = Γ1(𝑁) ( 1 0

0 𝑝 ) Γ0(𝑁).

3. If 𝛾 = 𝛾1 ( 1 0
0 𝑝 ) 𝛾2 with 𝛾1 ∈ Γ1(𝑁) and 𝛾2 ∈ Γ0(𝑁), then 𝛾2 belongs to Γ1(𝑁).

Each of these statements can be easily proved, and we ommit these proofs.

Proposition 4.3. Let 𝑓 ∈ 𝑀𝑘(Γ1(𝑁)). Then 𝑇𝑝𝑓 is given by:

𝑇𝑝𝑓 =

⎧
{{
⎨
{{
⎩

∑𝑝−1
𝑗=0 𝑓|𝑘 (

1 𝑗
0 𝑝

) 𝑝 ∣ 𝑁,

∑𝑝−1
𝑗=0 𝑓|𝑘 (

1 𝑗
0 𝑝

) + 𝑓|𝑘 (
𝑚𝑝 𝑛
𝑁𝑝 𝑝

) 𝑝 ∤ 𝑁.

Here the matrix ( 𝑚𝑝 𝑛
𝑁𝑝 𝑝 ) is chosen such that 𝛾∞ = ( 𝑚𝑝 𝑛

𝑁 1 ) belongs to Γ1(𝑁).

Proof. We just need to trace the definition of the double coset operator. That is, we need to
find an explicit coset decomposition of Γ3\Γ1(𝑁), where

Γ3 = (1 0
0 𝑝)

−1

Γ1(𝑁) (1 0
0 𝑝) ∩ Γ1(𝑁).

Define Γ0(𝑝) to be the group of matrices which are lower triangular modulo 𝑝. It is easy to see
that

Γ3 = Γ1(𝑁) ∩ Γ0(𝑝).

Consider the matrices 𝛾𝑗 = ( 1 𝑗
0 1 ), with 𝑗 ranging from 0 to 𝑝 − 1 inclusive. These are all

distinct modulo Γ1(𝑁) ∩ Γ0(𝑝) (check it). Given any matrix ( 𝑎 𝑏
𝑐 𝑑 ) ∈ Γ1(𝑁), note that

(𝑎 𝑏
𝑐 𝑑) (1 −𝑗

0 1 ) = (𝑎 −𝑎𝑗 + 𝑏
𝑐 −𝑐𝑗 + 𝑑) .

Therefore if 𝑝 ∤ 𝑎 we can make the right-hand side to belong to Γ0(𝑝) for some 𝑗. This means
that if 𝑝 divides 𝑁 then 𝑝 will not divide 𝑎 (because of the determinant condition), and thus
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the set {𝛾𝑗} is a complete set of representatives. If 𝑝 ∤ 𝑁, we need to consider matrices ( 𝑎 𝑏
𝑐 𝑑 )

with 𝑝 ∣ 𝑎. Choose some 𝛾∞ = ( 𝑚𝑝 𝑛
𝑁 1 ) ∈ Γ1(𝑁). Then:

(𝑎 𝑏
𝑐 𝑑) 𝛾−1

∞ = (∗ −𝑛𝑎 + 𝑏𝑚𝑝
0 ∗ ) .

Since 𝑝 divides −𝑛𝑎 + 𝑏𝑚𝑝, the matrix ( 𝑎 𝑏
𝑐 𝑑 ) is in the coset of 𝛾∞ modulo Γ0(𝑝). Hence

{𝛾𝑗} ∪ {𝛾∞} forms a complete set of representatives. In order to get the orbit representatives
for the double coset, we just need to multiply the 𝛾𝑗 by the fixed element 𝛼 = ( 1 0

0 𝑝 ).

4.2.2 The diamond ⟨𝑑⟩ operators

We define another (finite) set of operators on 𝑀𝑘(Γ1(𝑁)), called the diamond operators. First
we need some preliminaries on characters.

Definition 4.2. A modulo 𝑁 is a group homomorphism

𝜒∶ (ℤ/𝑁ℤ)× ⟶ ℂ×.

It can be extended to a map 𝜒∶ ℤ ⟶ ℂ by the recipe

𝜒(𝑑) = {
𝜒(𝑑 mod 𝑁) (𝑑, 𝑁) = 1
0 (𝑑, 𝑁) ≠ 1.

The resulting function is totally multiplicative: it satisfies

𝜒(𝑑1𝑑2) = 𝜒(𝑑1)𝜒(𝑑2) ∀𝑑1, 𝑑2 ∈ ℤ.

Consider the map Γ0(𝑁) ⟶ ℤ/𝑁ℤ× sending a matrix ( 𝑎 𝑏
𝑐 𝑑 ) to 𝑑 mod 𝑁. Its kernel is precisely

Γ1(𝑁), and therefore we obtain an isomorphism

Γ0(𝑁)/Γ1(𝑁) ≅ (ℤ/𝑁𝑍)×, (𝑎 𝑏
𝑐 𝑑) Γ1(𝑁) ↦ 𝑑 mod 𝑁.

Definition 4.3. Given 𝑑 ∈ ℤ coprime to 𝑁, the ⟨𝑑⟩ is the operator on 𝑀𝑘(Γ1(𝑁)) defined as

⟨𝑑⟩𝑓 = 𝑓|𝑘 (𝑎 𝑏
𝑐 𝑑′) ,

where 𝑎, 𝑏, 𝑐, 𝑑′ are chosen so that ( 𝑎 𝑏
𝑐 𝑑′ ) belongs to Γ0(𝑁) and 𝑑′ ≡ 𝑑 (mod 𝑁).

Note that the above is well defined, and only depends on the class of 𝑑 modulo 𝑁. This is
precisely because Γ0(𝑁)/Γ1(𝑁) ≅ (ℤ/𝑁𝑍)×. The operator ⟨𝑑⟩ is a linear invertible map, and
thus it makes sense to look at its eigenspaces.
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Definition 4.4. The space of modular forms with character 𝜒 is

𝑀𝑘(Γ0(𝑁), 𝜒) = {𝑓 ∈ 𝑀𝑘(Γ1(𝑁)) | 𝑓|𝑘 ( 𝑎 𝑏
𝑐 𝑑 ) = 𝜒(𝑑)𝑓, ( 𝑎 𝑏

𝑐 𝑑 ) ∈ Γ0(𝑁)}.

The 𝜒 is defined similarly and written 𝑆𝑘(Γ0(𝑁), 𝜒).

Note that 𝑀𝑘(Γ0(𝑁), 𝜒) can also be defined as

𝑀𝑘(Γ0(𝑁), 𝜒) = {𝑓 ∈ 𝑀𝑘(Γ1(𝑁)) | ⟨𝑑⟩𝑓 = 𝜒(𝑑)𝑓, 𝑑 ∈ (ℤ/𝑁ℤ)×}.

Theorem 4.1. There is a decomposition of ℂ-vector spaces

𝑀𝑘(Γ1(𝑁)) = ⨁
𝜒 mod 𝑁

𝑀𝑘(Γ0(𝑁), 𝜒),

where the sum runs over the 𝜙(𝑁) = #(ℤ/𝑁ℤ)× Dirichlet characters modulo 𝑁.

Proof. Picking a basis of 𝑀𝑘(Γ1(𝑁)), we get a representation

𝜌∶ (ℤ/𝑁ℤ)× ⟶ GL𝑛(ℂ), 𝜌(𝑑) = ⟨𝑑⟩,

where 𝑛 is the dimension of 𝑀𝑘(Γ1(𝑁)). Since (ℤ/𝑁ℤ)× is abelian, the representation 𝜌
decomposes as a sum of irreducible representations, which are necessarily one-dimensional.
This means that we can pick a basis for 𝑀𝑘(Γ1(𝑁)) such that

𝜌(𝑑) = diag(𝜒1(𝑑), … , 𝜒𝑛(𝑑)).

This means that ⟨𝑑⟩ acts as 𝜒𝑖(𝑑) on the 𝑖th component. One just needs to collect then the
repeated 𝜒 to form 𝑀𝑘(Γ0(𝑁), 𝜒).

4.2.3 Hecke operators on 𝑞-expansions

In order to study the action of Hecke operators on 𝑞-expansion, we introduce two simple
operators: if 𝑓 = ∑ 𝑎𝑛𝑞𝑛, define:

𝑈𝑝𝑓 = ∑ 𝑎𝑛𝑝𝑞𝑛 = ∑ 𝑎𝑛𝑞𝑛/𝑝.

The second equality is an abuse of notation: we define 𝑞𝑛/𝑝 = 0 if 𝑝 ∤ 𝑛. We define also:

𝑉𝑝𝑓 = 𝑓(𝑝𝑧) = ∑ 𝑎𝑛𝑞𝑛𝑝 = ∑ 𝑎𝑛/𝑝𝑞𝑛.

Lemma 4.4. If 𝑓 = ∑ 𝑎𝑛𝑞𝑛, then

1.

𝑈𝑝𝑓 = 1
𝑝

𝑝−1

∑
𝑗=0

𝑓 (𝑧 + 𝑗
𝑝

) =
𝑝−1

∑
𝑗=0

𝑓|𝑘 (1 𝑗
0 𝑝) .
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2.
𝑉𝑝𝑓 = 𝑝1−𝑘𝑓|𝑘 (𝑝 0

0 1) .

Proof. Note that if 𝜁𝑝 = 𝑒
2𝜋𝑖

𝑝 is a primitive 𝑝th root of unity, then

𝑝−1

∑
𝑗=0

𝜁𝑛𝑗
𝑝 = {

𝑝 𝑝 ∣ 𝑛
0 𝑝 ∤ 𝑛.

Now compute:
𝑝−1

∑
𝑗=0

𝑓|𝑘 (1 𝑗
0 𝑝) = 𝑝𝑘−1𝑝−𝑘 ∑

𝑗
𝑓 (𝑧 + 𝑗

𝑝
) .

Since 𝑓 is 1-periodic, this is the same as:

1
𝑝

∑
𝑗

∑
𝑛

𝑎𝑛𝑒2𝜋𝑖 𝑧+𝑗
𝑝 = ∑

𝑛
𝑎𝑛𝑒

2𝜋𝑖𝑛𝑧
𝑝

1
𝑝

∑
𝑗

𝜁𝑛𝑗
𝑝 .

This proves the first statement. The second statement is clear.

Putting together what we have seen so far, we get a description of 𝑇𝑝 in terms of 𝑈𝑝, 𝑉𝑝 and
the diamond operators.

Theorem 4.2. We have:

𝑇𝑝𝑓 = {
𝑈𝑝𝑓 𝑝 ∣ 𝑁,
𝑈𝑝𝑓 + 𝑝𝑘−1𝑉𝑝⟨𝑝⟩𝑓 𝑝 ∤ 𝑁.

Corollary 4.2. If 𝑓 ∈ 𝑀𝑘(Γ0(𝑁), 𝜒) then for all 𝑝 we have:

𝑇𝑝𝑓 = 𝑈𝑝𝑓 + 𝜒(𝑝)𝑝𝑘−1𝑉𝑝𝑓.

In particular, if 𝑓 ∈ 𝑀𝑘(Γ0(𝑁)) then:

𝑇𝑝𝑓 = {
𝑈𝑝𝑓 𝑝 ∣ 𝑁,
𝑈𝑝𝑓 + 𝑝𝑘−1𝑉𝑝𝑓 𝑝 ∤ 𝑁.

Moreover, the relation between 𝑈𝑝 and 𝑇𝑃 allows us to think of 𝑈𝑝 as an operator on modular
forms, which possibly raises the level.

Corollary 4.3.

1. If 𝑝 ∣ 𝑁 then 𝑈𝑝 maps 𝑀𝑘(Γ1(𝑁)) to itself.
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2. If 𝑝 ∤ 𝑁 then 𝑈𝑝 maps 𝑀𝑘(Γ1(𝑁)) to 𝑀𝑘(Γ1(𝑁𝑝)).

Example 4.1. Consider the Eisenstein series

𝐸𝑘(𝑧) = 1 − 2𝑘
𝐵𝑘

∞
∑
𝑛=1

𝜎𝑘−1(𝑛)𝑞𝑛 ∈ 𝑀𝑘(Γ1(1)).

Proposition 4.4. We have:

𝑇𝑝𝐸𝑘 = 𝜎𝑘−1(𝑝)𝐸𝑘 = (1 + 𝑝𝑘−1)𝐸𝑘.

That is, 𝐸𝑘 is an eigenform for all 𝑇𝑝, with eigenvalue 𝜎𝑘−1(𝑝).

Proof. In general we have seen that, since 𝐸𝑘 ∈ 𝑀𝑘(Γ0(1))),

𝑎𝑛(𝑇𝑝𝑓) = 𝑎𝑛(𝑈𝑝𝑓) + 𝑝𝑘−1𝑎𝑛(𝑉𝑝𝑓) = 𝑎𝑛𝑝(𝑓) + 𝑝𝑘−1𝑎𝑛/𝑝(𝑓).

So
𝑎0(𝑇𝑝𝐸𝑘) = 𝑎0(𝐸𝑘) + 𝑝𝑘−1𝑎0(𝐸𝑘) = 𝜎𝑘−1(𝑝)𝑎0(𝐸𝑘).

For 𝑛 ≥ 1, we get
𝑎𝑛(𝑇𝑝𝐸𝑘) = −2𝑘

𝐵𝑘
(𝜎𝑘−1(𝑛𝑝) + 𝑝𝑘−1𝜎𝑘−1(𝑛/𝑝)) ,

where we understand that 𝜎𝑘−1(𝑛/𝑝) = 0 if 𝑝 ∤ 𝑛. We claim that:

𝜎𝑘−1(𝑝𝑛) + 𝑝𝑘−1𝜎𝑘−1(𝑛/𝑝) = 𝜎𝑘−1(𝑝)𝜎𝑘−1(𝑛), ∀𝑛 ≥ 1.

When 𝑝 ∤ 𝑛, this is just the multiplicativity of 𝜎𝑘−1. If 𝑝 ∣ 𝑛, write 𝑛 = 𝑝𝑒𝑚 with 𝑝 ∤ 𝑚. Then
we need to show that for all 𝑒 ≥ 1

𝜎𝑘−1(𝑝𝑒+1𝑚) + 𝑝𝑘−1𝜎𝑘−1(𝑝𝑒−1𝑚) = 𝜎𝑘−1(𝑝)𝜎𝑘−1(𝑝𝑒𝑚).

This follows easily by dividing both sides by 𝜎𝑘−1(𝑚), which is a common factor of both sides
of the equation again by multiplicativity of 𝜎𝑘−1.

If 𝑓 = 1 + ∑𝑛≥1 𝑎𝑛𝑞𝑛 is a modular form for SL2(ℤ) of weight 𝑘 and it is an eigenform for
𝑇𝑝, then the eigenvalue must be 𝜎𝑘−1(𝑝), by the first calculation of the above proof. The real
content of the proposition is thus that 𝐸𝑘 is actually an eigenform.
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4.3 The Hecke algebra

Definition 4.5. Let 𝑁 ≥ 1 and 𝑘 ∈ ℤ. The acting on 𝑀𝑘(Γ1(𝑁)) is the ℂ-subalgebra of
Endℂ𝑀𝑘(Γ1(𝑁)) generated by

⟨𝑇𝑝 ∶ 𝑝 prime; and ⟨𝑑⟩ ∶ 𝑑 ∈ (ℤ/𝑁ℤ)×⟩.

The Hecke algebra is denoted by 𝕋(𝑀𝑘(Γ1(𝑁))). Similarly we define 𝕋(𝑆𝑘(Γ1(𝑁))) as a
subalgebra of Endℂ𝑆𝑘(Γ1(𝑁)).

Theorem 4.3. For every 𝑁 ≥ 1 the Hecke algebra 𝕋(𝑀𝑘(Γ1(𝑁))) is commutative.

Proof. We must show that for all primes 𝑝, 𝑞 and all elements 𝑒 and 𝑑 of (ℤ/𝑁ℤ)× we have:

1. ⟨𝑑⟩𝑇𝑝 = 𝑇𝑝⟨𝑑⟩,

2. ⟨𝑑⟩⟨𝑒⟩ = ⟨𝑒⟩⟨𝑑⟩, and

3. 𝑇𝑝𝑇𝑞 = 𝑇𝑞𝑇𝑝.

First we show (2) and (3) assuming (1). Note that (1) means that 𝑇𝑝 preserves the spaces
𝑀𝑘(Γ0(𝑁), 𝜒) and so it’s enough to check (2) and (3) for forms 𝑓 ∈ 𝑀𝑘(Γ0(𝑁), 𝜒). This makes
(2) obvious. As for (3), we can use the 𝑞-expansions: if 𝑓 = ∑ 𝑎𝑛𝑞𝑛, then

𝑎𝑛(𝑇𝑝𝑓) = 𝑎𝑝𝑛(𝑓) + 𝜒(𝑝)𝑝𝑘−1𝑎𝑛/𝑝(𝑓).

Then:

𝑎𝑛(𝑇𝑝𝑇𝑞𝑓) = 𝑎𝑝𝑛(𝑇𝑞𝑓) + 𝜒(𝑝)𝑝𝑘−1𝑎𝑛/𝑝(𝑇𝑞𝑓)
= 𝑎𝑝𝑞𝑛(𝑓) + 𝜒(𝑞)𝑞𝑘−1𝑎𝑝𝑛/𝑞(𝑓) + 𝜒(𝑝)𝑝𝑘−1(𝑎𝑛𝑞/𝑝(𝑓) + 𝜒(𝑞)𝑞𝑘−1𝑎𝑛/(𝑝𝑞)(𝑓)).

This formula is symmetric in 𝑝 and 𝑞 so we are done.

Finally, to prove (1) we must write ⟨𝑑⟩ as a double coset. Let 𝛾 ≡ ( ∗ ∗
0 𝑑 ) (mod 𝑁). Write

Γ = Γ1(𝑁). Then, since Γ is normal in Γ0(𝑁), we have

Γ𝛾Γ = Γ𝛾,

and thus ⟨𝑑⟩𝑓 = 𝑓|𝑘𝛾. We want to show that ⟨𝑑⟩−1𝑇𝑝⟨𝑑⟩ = 𝑇𝑝. Write Γ𝛼Γ = ⋃𝑗 Γ𝛽𝑗 for the
orbit decomposition of the double coset corresponding to 𝑇𝑝. We thus need to show that

Γ𝛼Γ = ⋃
𝑗

Γ(𝛾𝛽𝑗𝛾−1).
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We note that

⋃
𝑗

Γ(𝛾𝛽𝑗𝛾−1) = 𝛾 (⋃
𝑗

Γ𝛽𝑗) 𝛾−1 = 𝛾(Γ𝛼Γ)𝛾−1 = Γ(𝛾𝛼𝛾−1)Γ,

and one just checks then that
Γ𝛼Γ = Γ(𝛾𝛼𝛾−1)Γ.

Next, we define operators 𝑇𝑛 and ⟨𝑛⟩ for all 𝑛 ≥ 1. First, define ⟨𝑝⟩ = 0 whenever 𝑝 ∣ 𝑁. One
can implicitly define 𝑇𝑛 by the following formula:

∞
∑
𝑛=1

𝑇𝑛𝑛−𝑠 = ∏
𝑝

1
1 − 𝑇𝑝𝑝−𝑠 + ⟨𝑝⟩𝑝𝑘−1−2𝑠 .

This in turn is equivalent to the following conditions:

1. 𝑇𝑛𝑚 = 𝑇𝑛𝑇𝑚 if (𝑛, 𝑚) = 1,

2. 𝑇1 = id, and

3. for all primes 𝑝 and for all 𝑟 ≥ 2,

𝑇𝑝𝑟 = 𝑇𝑝𝑇𝑝𝑟−1 − 𝑝𝑘−1⟨𝑝⟩𝑇𝑝𝑟−2 .

From the definition we can see that each 𝑇𝑛 is an explicit polynomial on the 𝑇𝑝, and therefore
all 𝑇𝑛 commute with each other.

Theorem 4.4. Suppose 𝑓 ∈ 𝑀𝑘(Γ1(𝑁)) has an expansion of the form ∑ 𝑎𝑚(𝑓)𝑞𝑚. Then
𝑇𝑛(𝑓) = ∑ 𝑎𝑚(𝑇𝑛𝑓)𝑞𝑚, where

𝑎𝑚(𝑇𝑛𝑓) = ∑
𝑑∣(𝑚,𝑛)

𝑑𝑘−1𝑎 𝑚𝑛
𝑑2

(⟨𝑑⟩𝑓).

In particular, if 𝑓 ∈ 𝑀𝑘(Γ0(𝑁), 𝜒) then

𝑎𝑚(𝑇𝑛𝑓) = ∑
𝑑∣(𝑚,𝑛)

𝜒(𝑑)𝑑𝑘−1𝑎 𝑚𝑛
𝑑2

(𝑓).

Proof. A long computation.

We end this section with the notion of Hecke eigenforms.

Definition 4.6. A (or just eigenform) is a non-zero modular form 𝑓 ∈ 𝑀𝑘(Γ1(𝑁)) which is
an eigenvector for all the Hecke algebra 𝕋(𝑀𝑘(Γ1(𝑁)). A (or normalized eigenform) is an
eigenform satisfying 𝑎1(𝑓) = 1.
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Let 𝑓 ∈ 𝑀𝑘(Γ1(𝑁)) be an eigenform, say 𝑇𝑛𝑓 = 𝜆𝑛𝑓 for all 𝑛. Then we obtain

𝑎𝑛(𝑓) = 𝑎1(𝑇𝑛𝑓) = 𝜆𝑛𝑎1(𝑓), 𝑛 ≥ 1.

So if 𝑎1(𝑓) = 0 then all 𝑎𝑛(𝑓) = 0 and thus 𝑓 = 0. Therefore a non-constant non-zero eigenform
must have 𝑎1(𝑓) ≠ 0 and it may be scaled to a normalized eigenform. In particular, we have
the following.

Theorem 4.5. Let 𝑓 ∈ 𝑀𝑘(Γ1(𝑁)) be a normalized eigenform. Then the eigenvalues of the
Hecke operators on 𝑓 are precisely the coefficients of the 𝑞-expansion of 𝑓 at the cusp ∞:

𝑇𝑛𝑓 = 𝑎𝑛(𝑓)𝑓, 𝑛 ≥ 1. (4.1)

Proof. Write 𝜆𝑛 for the eigenvalue of the Hecke operator 𝑇𝑛. By Equation 4.1 we have
𝑎𝑛(𝑓) = 𝑎1(𝑇𝑛𝑓) = 𝜆𝑛𝑎1(𝑓). Since 𝑓 is normalized, 𝑎1(𝑓) = 1 and hence 𝑎𝑛(𝑓) = 𝜆𝑛.

In fact, the Fourier coefficients of a modular form readily tell whether it is a normalized
eigenform:

Proposition 4.5. Let 𝑓 ∈ 𝑀𝑘(Γ0(𝑁), 𝜒) be a modular form with 𝑞-expansion ∑∞
𝑛=0 𝑎𝑛(𝑓)𝑞𝑛.

Then 𝑓 is a normalized eigenform if and only if:

1. 𝑎1(𝑓) = 1,

2. 𝑎𝑚𝑛(𝑓) = 𝑎𝑚(𝑓)𝑎𝑛(𝑓) whenever (𝑚, 𝑛) = 1, and

3. 𝑎𝑝𝑟(𝑓) = 𝑎𝑝(𝑓)𝑎𝑝𝑟−1(𝑓) − 𝑝𝑘−1𝜒(𝑝)𝑎𝑝𝑟−2(𝑓), 𝑟 ≥ 2.

Proof. The implication ⟹ follows directly from the previous proposition and the definition
of the Hecke operators 𝑇𝑛. For the converse, if 𝑓 ∈ 𝑀𝑘(Γ0(𝑁), 𝜒) satisfies (1), (2) and (3) then
𝑓 is already normalized, so to be an eigenform we must show that it satisfies

𝑎𝑚(𝑇𝑝𝑓) = 𝑎𝑝(𝑓)𝑎𝑚(𝑓), ∀𝑝 prime, ∀𝑚 ≥ 1.

If 𝑝 ∤ 𝑛 then it follows from the formula that we have for 𝑇𝑚 on 𝑞-expansions that 𝑎𝑚(𝑇𝑝𝑓) =
𝑎𝑝𝑚(𝑓), which by (2) is 𝑎𝑝(𝑓)𝑎𝑚(𝑓). If 𝑝 ∣ 𝑚 then writing 𝑚 = 𝑝𝑟𝑚′ with 𝑟 ≥ 1 and 𝑝 ∤ 𝑚′ we
have by the same formula

𝑎𝑚(𝑇𝑝𝑓) = 𝑎𝑝𝑟+1𝑚′(𝑓) + 𝜒(𝑝)𝑝𝑘−1𝑎𝑝𝑟−1𝑚′(𝑓).

Using now conditions (2) and (3) this can be rewritten as 𝑎𝑝(𝑓)𝑎𝑚(𝑓), as wanted.
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4.4 Petersson inner product

4.4.1 Surface integrals

Let 𝑉 ⊆ ℂ. A 2-form on 𝑉 is an expression of the form 𝜔 = 𝑓(𝑧, ̄𝑧)𝑑𝑧 ∧ 𝑑 ̄𝑧. Note that

𝑑𝑧 ∧ 𝑑 ̄𝑧 = (𝑑𝑥 + 𝑖𝑑𝑦) ∧ (𝑑𝑥 − 𝑖𝑑𝑦) = −2𝑖𝑑𝑥 ∧ 𝑑𝑦.

The integral of 𝜔 on 𝑉 is:

∫
𝑉

𝜔 = ∫
𝑉

𝑓(𝑧, ̄𝑧𝑑𝑧 ∧ 𝑑 ̄𝑧 = ∫ ∫ −2𝑖𝑓(𝑥 + 𝑖𝑦, 𝑥 − 𝑖𝑦)𝑑𝑥𝑑𝑦.

Consider now, for 𝛼 ∈ GL+
2 (ℝ), the change 𝑧 ↦ 𝛼𝑧. Then:

ℑ(𝛼𝑧) = det 𝛼
|𝑐𝑧 + 𝑑|2

ℑ(𝑧),

and also
𝑑(𝛼𝑧) = det 𝛼

(𝑐𝑧 + 𝑑)2 𝑑𝑧, 𝑑(𝛼𝑧) = det 𝛼
(𝑐𝑧 + 𝑑)2

𝑑 ̄𝑧.

This gives that:

𝑑(𝛼𝑧) ∧ 𝑑𝛼𝑧 = (det 𝛼)2

|𝑐𝑧 + 𝑑|4
𝑑𝑧 ∧ 𝑑 ̄𝑧.

Therefore the 2-form 𝑑𝑧∧𝑑 ̄𝑧
ℑ(𝑧)2 is invariant under changes of the form 𝑧 ↦ 𝛼𝑧. We will work instead

with a certain multiple of this 2-form. Define

𝑑𝜇(𝑧) = 𝑑𝑥 ∧ 𝑑𝑦
𝑦2 = −1

2𝑖
𝑑𝑧 ∧ 𝑑 ̄𝑧
ℑ(𝑧)2 .

We can define the of SL2(ℤ) as

covol(SL2(ℤ)) = ∫
𝐷∗

𝑑𝜇(𝑧).

where 𝐷∗ is a fundamental domain for SL2(ℤ).

Lemma 4.5.
covol(SL2(ℤ)) = 𝜋

3
.

Proof. Exercise.

Corollary 4.4. If 𝜑 is a bounded function on 𝐷∗, then ∫
𝐷∗ 𝜑(𝑧)𝑑𝜇(𝑧) is a well-defined complex

number.
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4.4.2 Integral over 𝑋(Γ)

Let 𝒟 be a fundamental domain for a congruence subgroup Γ. Such a fundamental domain is
the union (almost disjoint) of translates of 𝐷∗:

𝒟 = ∪𝑗𝛼𝑗𝐷∗,

where {𝛼𝑗} is a set of coset representatives for (±1 ⋅ Γ)\SL2(ℤ). If 𝜑 is Γ-invariant, then we
may define the integral of 𝜑 on 𝑋(Γ) = Γ\ℍ as:

∫
𝑋(Γ)

𝜑(𝜏)𝑑𝜇(𝜏) = ∑
𝑗

∫
𝛼𝑗𝐷∗

𝜑(𝜏)𝑑𝜇(𝜏) = ∑
𝑗

∫
𝐷∗

𝜑(𝛼𝑗𝜏)𝑑𝜇(𝛼𝑗𝜏) = ∑
𝑗

∫
𝐷∗

𝜑(𝛼𝑗𝜏)𝑑𝜇(𝜏).

The last term in the above equality shows that the definition is independent of the choice of
coset representatives. We may calculate the covolume of Γ as:

Lemma 4.6. Let Γ ⊂ SL2(ℤ) be a congruence subgroup. Then

covol(Γ) = ∫
𝑋(Γ)

𝑑𝜇(𝜏) = [PSL2(ℤ) ∶ Γ]covol(SL2(ℤ)) = 𝜋
3

[PSL2(ℤ) ∶ Γ].

Let 𝑓 and 𝑔 be two cusp forms for Γ of weight 𝑘, and set 𝜑(𝜏) = 𝑓(𝜏)𝑔(𝜏)ℑ(𝜏)𝑘.

Lemma 4.7. The function 𝜑 is Γ-invariant and, for all 𝛼 ∈ SL2(ℤ), the translate 𝜑(𝛼𝜏) is
bounded on 𝐷∗.

Proof. If 𝛾 belongs to Γ, then we may compute:

𝜑(𝛾𝜏) = 𝑓|𝑘𝛾𝑗(𝛾, 𝜏)−𝑘𝑔|𝑘𝛾𝑗(𝛾, 𝜏)−𝑘𝑗(𝛾, 𝜏)2𝑘ℑ(𝑧)𝑘 = 𝜑(𝜏).

If 𝛼 belongs to SL2(ℤ), then:

𝜑(𝛼𝜏) = 𝑓|𝑘𝛼𝑔|𝑘𝛼ℑ(𝜏)𝑘 = 𝑂(𝑞ℎ)𝑂(𝑞ℎ)𝑦𝑘 = 𝑂(|𝑞ℎ|2𝑦𝑘).

This approaches 0 as 𝑦 approaches infinity, because 𝑞ℎ = 𝑒
2𝜋𝑖(𝑥+𝑖𝑦)

𝑧 . This gives boundedness.

The previous lemma allows us to define an inner product on the spaces of cusp forms:

Definition 4.7. The of 𝑓 and 𝑔 is:

⟨𝑓, 𝑔⟩Γ = 1
covol(Γ)

∫
𝑋(Γ)

𝑓(𝜏)𝑔(𝜏)ℑ(𝜏)𝑘𝑑𝜇(𝜏).

70



For the above to converge it is enough that one of the forms 𝑓 and 𝑔 is in 𝑆𝑘. Therefore the
product of a modular form with a cusp form is well defined.

The reason to divide by covol(Γ) is that, in this way, if Γ ⊆ Γ′ then

⟨𝑓, 𝑔⟩Γ = ⟨𝑓, 𝑔⟩Γ′ .

Proposition 4.6. The Petersson inner product is a positive-definite hermitian product on the
ℂ-vector space 𝑆𝑘(Γ). That is:

1. ⟨𝑎1𝑓1 + 𝑎2𝑓2, 𝑔⟩Γ = 𝑎1⟨𝑓1, 𝑔⟩Γ + 𝑎2⟨𝑓2, 𝑔⟩Γ.

2. ⟨𝑔, 𝑓⟩Γ = ⟨𝑓, 𝑔⟩Γ.

3. ⟨𝑓, 𝑓⟩ ≥ 0, with equality if and only if 𝑓 = 0.

Although the Petersson inner product does not extend to all of 𝑀𝑘(Γ), it still allows us to
define an “orthogonal complement to 𝑆𝑘(Γ):

Definition 4.8. The of 𝑀𝑘(Γ) is the space

ℰ𝑘(Γ) = {𝑓 ∈ 𝑀𝑘(Γ) | ⟨𝑓, 𝑔⟩Γ = 0 ∀𝑔 ∈ 𝑆𝑘(Γ)}.

4.4.3 Adjoint operators

If ⟨⋅, ⋅⟩ is an hermitian product on a ℂ-vector space 𝑉 and 𝑇∶ 𝑉 ⟶ 𝑉 is a linear operator, the
of 𝑇 is defined as the operator 𝑇 ∗ which satisfies:

⟨𝑇 𝑓, 𝑔⟩ = ⟨𝑓, 𝑇 ∗𝑔⟩.

The goal of this subsection is to calculate the adjoint operators to the Hecke operators. We
will need the following technical result.

Lemma 4.8. Let Γ ⊂ SL2(ℤ) be a congruence subgroup and let 𝛼 ∈ GL+
2 (ℚ).

1. If 𝜑∶ ℍ ⟶ ℂ is continuous, bounded and Γ-invariant then:

∫
𝛼−1Γ𝛼\ℍ

𝜑(𝛼𝜏)𝑑𝜇(𝜏) = ∫
Γ\ℍ

𝜑(𝜏)𝑑𝜇(𝜏).

2. If 𝛼−1Γ𝛼 is contained in SL2(ℤ) then Γ and 𝛼−1Γ𝛼 have equal covolumes and indices in
SL2(ℤ).
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3. Let 𝑛 = [Γ∶ 𝛼−1Γ𝛼 ∩ Γ] = [Γ∶ 𝛼Γ𝛼−1 ∩ Γ]. There are matrices 𝛽1, … , 𝛽𝑛 ∈ GL+
2 (ℚ)

inducing disjoint unions
Γ𝛼Γ = ⋃ Γ𝛽𝑗 = ⋃ 𝛽𝑗Γ.

Proof. The first two statements are easy and follow from the change of variables formula and
Lemma 4.6. The equality of indices in (3) follows by applying (2) to 𝛼Γ𝛼−1 ∩ Γ instead of Γ
and using multiplicativity of indices. Therefore there exist 𝛾1, … 𝛾𝑛 and ̃𝛾1, … , ̃𝛾𝑛 in Γ such
that

Γ = ⋃(𝛼−1Γ𝛼 ∩ Γ)𝛾𝑗 = ⋃(𝛼Γ𝛼−1 ∩ Γ) ̃𝛾−1
𝑗 .

By how coset representatives are linked to orbit representatives in a double coset, we get:

Γ𝛼Γ = ⋃ Γ𝛼𝛾𝑗, Γ𝛼−1Γ = ⋃ Γ𝛼−1 ̃𝛾−1
𝑗 .

By taking inverses in the second decomposition we get

Γ𝛼Γ = ⋃ ̃𝛾𝑗𝛼Γ.

Suppose that Γ𝛼𝛾𝑗 ∩ ̃𝛾𝑗𝛼Γ = ∅. Then

Γ𝛼𝛾𝑗 ⊂ ⋃
𝑖≠𝑗

̃𝛾𝑖𝛼Γ.

Multiply from the right by Γ to get Γ𝛼Γ ⊂ ⋃𝑖≠𝑗 ̃𝛾𝑖𝛼Γ, a contradiction with the decomposition
of Γ𝛼Γ into 𝑛 orbits for Γ. Therefore we deduce that Γ𝛼𝛾𝑗 intersects ̃𝛾𝑗𝛼Γ, for each 𝑗. Let 𝛽𝑗
be any element in this intersection. This gives

Γ𝛼Γ = ⋃ Γ𝛽𝑗 = ⋃ 𝛽𝑗Γ.

This allows us to compute adjoints of double coset operators.

Proposition 4.7. Let Γ ⊆ SL2(ℤ) be a congruence subgroup and let 𝛼 ∈ GL+
2 (ℚ). Let

𝛼∗ = det(𝛼)𝛼−1 be the classical adjoint to 𝛼. Then

1. If 𝛼−1Γ𝛼 ⊆ SL2(ℤ), and 𝑓 ∈ 𝑆𝑘(Γ) and 𝑔 ∈ 𝑆𝑘(𝛼−1Γ𝛼),

⟨𝑓|𝑘𝛼, 𝑔⟩𝛼−1Γ𝛼 = ⟨𝑓, 𝑔|𝑘𝛼∗⟩Γ.

2. For all 𝑓, 𝑔 ∈ 𝑆𝑘(Γ),
⟨𝑓|𝑘[Γ𝛼Γ], 𝑔⟩ = ⟨𝑓, 𝑔|𝑘[Γ𝛼∗Γ]⟩.
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Proof. We prove only (1). The second statement follows easily. We will use the equalities that
we have already seen:

𝑗(𝛼, 𝛼∗𝑧) = 𝑗(𝛼𝛼∗, 𝑧)𝑗(𝛼∗, 𝑧)−1 = det 𝛼𝑗(𝛼∗, 𝑧)−1, ℑ(𝛼∗𝑧) = det 𝛼∗

|𝑗(𝛼∗, 𝑧)|2
ℑ(𝑧).

Let 𝑀 = covol(Γ) = covol(𝛼−1Γ𝛼). Then we compute:

𝑀⟨𝑓|𝑘𝛼, 𝑔⟩𝛼−1Γ𝛼 = ∫
𝛼−1Γ𝛼\ℍ

(det 𝛼)𝑘−1𝑗(𝛼, 𝑧)−𝑘𝑓(𝛼𝑧)𝑔(𝑧)ℑ(𝑧)𝑘𝑑𝜇(𝑧)

= ∫
Γ\ℍ

(det 𝛼)𝑘−1𝑗(𝛼, 𝛼∗𝑧)−𝑘𝑓(𝑧)𝑔(𝛼∗𝑧)ℑ(𝛼∗𝑧)𝑘𝑑𝜇(𝑧)

= ∫
Γ\ℍ

(det 𝛼)𝑘−1(det 𝛼)−𝑘𝑓(𝑧)𝑗(𝛼∗, 𝑧)𝑘𝑔(𝛼∗𝑧) (det 𝛼∗)𝑘

|𝑗(𝛼∗, 𝑧)|2𝑘 ℑ(𝑧)𝑘𝑑𝜇(𝑧)

= ∫
Γ\ℍ

𝑓(𝑧)(det 𝛼)𝑘−1𝑗(𝛼∗, 𝑧)
−𝑘

𝑔(𝛼∗𝑧)ℑ(𝑧)𝑘𝑑𝜇(𝑧)

= ∫
Γ\ℍ

𝑓(𝑧)𝑔|𝑘𝛼∗(𝑧)ℑ(𝑧)𝑘𝑑𝜇(𝑧) = 𝑀⟨𝑓, 𝑔|𝑘𝛼∗⟩Γ.

Definition 4.9. A linear operator 𝑇 is if it commutes with its adjoint:

𝑇 𝑇 ∗ = 𝑇 ∗𝑇 .

Theorem 4.6. Consider the ℂ-vector space 𝑆𝑘(Γ1(𝑁)). If 𝑝 ∤ 𝑁 then:

⟨𝑝⟩∗ = ⟨𝑝⟩−1 = ⟨𝑝−1⟩, and 𝑇 ∗
𝑝 = ⟨𝑝⟩−1𝑇𝑝.

Proof. Write ⟨𝑝⟩ = [Γ𝛼Γ], where 𝛼 ∈ Γ0(𝑁) is such that modulo 𝑁 is congruent to ( 𝑎 𝑏
0 𝑝 ). By

Proposition 4.7, we have that ⟨𝑝⟩∗ consists on acting with 𝛼∗ = det 𝛼𝛼−1. Since det 𝛼 = 1,
then 𝛼∗ = 𝛼−1 and thus ⟨𝑝⟩∗ = ⟨𝑝−1⟩ = ⟨𝑝⟩−1.

As for the second part, we set 𝛼 = ( 1 0
0 𝑝 ) and we need to compute Γ𝛼∗Γ. Note that

𝛼∗ = (𝑝 0
0 1) = ( 1 𝑛

𝑁 𝑚𝑝)
−1

(1 0
0 𝑝) ( 𝑝 𝑛

𝑁 𝑚) , 𝑚𝑝 − 𝑛𝑁 = 1.

In the right-hand side, the first matrix is in Γ1(𝑁) and the last is in Γ0(𝑁). Since Γ0(𝑁) is
normal in Γ1(𝑁), we get

Γ1(𝑁) (𝑝 0
0 1) Γ1(𝑁) = Γ1(𝑁) (1 0

0 𝑝) Γ1(𝑁) ( 𝑝 𝑛
𝑁 𝑚) .
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Since 𝑚 ≡ 𝑝−1 (mod 𝑁), the matrix ( 𝑝 𝑛
𝑁 𝑚) acts as ⟨𝑝−1⟩. Therefore:

𝑇 ∗
𝑝 𝑓 = ∑

𝑗
𝑓|𝑘𝛽𝑗 ( 𝑝 𝑛

𝑁 𝑚) = (𝑇𝑝𝑓)|𝑘 ( 𝑝 𝑛
𝑁 𝑚) = ⟨𝑝−1⟩𝑇𝑝𝑓.

Corollary 4.5. If 𝑛 is coprime to 𝑁, the Hecke operators 𝑇𝑛 and ⟨𝑛⟩ are normal.

Theorem 4.7. Let 𝑇 be a normal operator on a finite dimensional ℂ-vector space. Then 𝑇 has
an orthogonal basis of eigenvectors.

Applying this theorem multiple times we deduce that if a ℂ-vector space has a family of normal,
pairwise commuting operators then it has a basis of simultaneous eigenvectors. Particularizing
to our situation, we get the following result.

Corollary 4.6. The space 𝑆𝑘(Γ1(𝑁)) has an orthogonal basis of simultaneous eigenforms for
all the 𝑇𝑛 and ⟨𝑛⟩ with (𝑛, 𝑁) = 1.

Proof. Apply the spectral theorem for the first of the 𝑇𝑛, to get an orthogonal basis of eigenforms.
To each of the subspaces one can apply the second of the 𝑇𝑛 to refine the basis, thanks to the
fact that the Hecke operators commute with each other and hence preserve eigenspaces. The
process terminates after a finite number of steps because 𝑆𝑘(Γ1(𝑁)) is finite-dimensional.

Consider 𝑆𝑘(SL2(ℤ)) = 𝑆𝑘(Γ1(1)). It has a basis of eigenforms for all the Hecke operators 𝑇𝑛
(and ⟨𝑛⟩). We may normalize the eigenforms 𝑓 so that 𝑎1(𝑓) = 1. Then we will obtain:

𝑇𝑛𝑓 = 𝑎𝑛(𝑓)𝑓, ∀𝑛.

Therefore each system of eigenvalues {𝑎𝑛(𝑓)}𝑛≥1 corresponds to a unique eigenform 𝑓. We
say that 𝑆𝑘(SL2(ℤ)) satisfies . In other words, 𝑆𝑘(SL2(ℤ)) decomposes into a direct sum of
one-dimensional eigenspaces. In the next section we investigate when this fails to be true, and
what can be done to remedy it.
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4.5 Atkin-Lehner-Li theory

Let us consider 𝑆𝑘(Γ1(𝑁)) for an arbitrary 𝑁. We have already seen that there is a basis
of simultaneous eigenforms for the 𝑇𝑛 and ⟨𝑛⟩ operators, as long as 𝑛 is coprime to 𝑁. We
want to investigate if the components of this basis are also eigenforms for the remaining Hecke
operators and if multiplicity one is satisfied.

Recall the operator 𝑉𝑑 ∶ 𝑀𝑘(Γ1(𝑀)) ⟶ 𝑀𝑘(Γ1(𝑀𝑑)) which was introduced before for 𝑑 a
prime:

(𝑉𝑑𝑓)(𝜏) = 𝑓(𝑑𝜏) = 𝑑1−𝑘𝑓|𝑘 (𝑑 0
0 1) .

If (𝑡, 𝑑) = 1 then it is easy to check that 𝑉𝑑𝑈𝑡 = 𝑈𝑡𝑉𝑑, and hence 𝑉𝑑𝑇𝑛 = 𝑇𝑛𝑉𝑑 whenever
(𝑛, 𝑑) = 1.

4.5.1 Examples

Both Δ(𝑧) and Δ(2𝑧) are cusp forms in 𝑆12(Γ1(2)). Write

Δ = ∑
𝑛≥1

𝜏(𝑛)𝑞𝑛,

so that 𝑇𝑝Δ = 𝜏(𝑝)Δ for all 𝑝. Here, by 𝑇2 we mean the Hecke operator as acting on
𝑆12(SL2(ℤ)). By what we have seen above, we have:

𝑇𝑝(Δ(2𝑧)) = 𝜏(𝑝)Δ(2𝑧), 𝑝 ≠ 2.

Therefore Δ(𝑧) and Δ(2𝑧) have, when considered in 𝑆12(Γ1(2)), the same “system of eigenvalues”
{𝜏(𝑛)}(𝑛,2)=1. Therefore 𝑆12(Γ1(2)) does not satisfy multiplicity one.

However, the Hecke operator 𝑇2 = 𝑈2 as acting on 𝑆12(Γ1(2)) satisfies:

𝑈2(Δ(2𝑧)) = Δ(𝑧), and 𝑈2(Δ(𝑧)) = 𝑇2Δ − 211𝑉2(Δ) = −24Δ(𝑧) − 211Δ(2𝑧).

Therefore 𝑈2 acts on 𝑆12(Γ1(2)) with matrix

[𝑈2] = ( −24 1
−211 0) ,

which is diagonalizable. The eigenvectors

𝑓± = Δ(𝑧) + (12 ± 4
√

−119)Δ(2𝑧)

can be completed to give a basis of eigenforms for all the 𝑇𝑛.
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The following example shows that sometimes one may not get a basis of eigenforms for all
𝑇𝑝. Let 𝑓 ∈ 𝑆2(Γ1(𝑁)) be an eigenform for {𝑇𝑞}𝑞∤𝑁 ∪ {𝑈𝑞}𝑞∣𝑁, and let 𝑝 ∤ 𝑁. Let 𝑆 be the
following 4-dimensional ℂ-vector subspace of 𝑆2(Γ1(𝑁𝑝3)):

𝑆 = spanℂ{𝑓(𝜏), 𝑓(𝑝𝜏), 𝑓(𝑝2𝜏), 𝑓(𝑝3𝜏)}.

Since 𝑇𝑞 commutes with 𝑉𝑝, the subspace 𝑆 is stable under {𝑇𝑞}𝑞∤𝑁𝑝3 . Moreover, 𝑆 is also
stable under {𝑇𝑞 = 𝑈𝑞}𝑞∣𝑁. The following result shows that 𝑆 does not satisfy multiplicity
one.

Proposition 4.8.

1. 𝑆 is stable under {𝑇𝑞}𝑞∤𝑁𝑝3 ∪ {𝑇𝑞 = 𝑈𝑞}𝑞∣𝑁 ∪ {𝑇𝑝 = 𝑈𝑝}.

2. The matrix of 𝑈𝑝 is not diagonalizable.

Proof. Exercise.

4.5.2 New and old forms

Suppose that 𝑀 ∣ 𝑁 are two positive integers. There are many ways to embed 𝑆𝑘(Γ1(𝑀)) into
𝑆𝑘(Γ1(𝑁)). For example, for any 𝑑 such that 𝑑𝑀 ∣ 𝑁, we can map 𝑓 to 𝑉𝑑𝑓.

Definition 4.10. The , denoted by 𝑆𝑘(Γ1(𝑁))old is:

𝑆𝑘(Γ1(𝑁))old = spanℂ {𝑉𝑑(𝑆𝑘(Γ1(𝑀))) ∶ 𝑑𝑀 ∣ 𝑁, 𝑀 ≠ 𝑁} .

The , denoted by 𝑆𝑘(Γ1(𝑁))new is the orthogonal complement (with respect to the Petersson
inner product) of 𝑆𝑘(Γ1(𝑁))old in 𝑆𝑘(Γ1(𝑁)).

Theorem 4.8. The spaces 𝑆𝑘(Γ1(𝑁))old and 𝑆𝑘(Γ1(𝑁))new are stable under all Hecke operators.

Proof. Let ℓ be a prime dividing 𝑁. We may define

𝑆𝑘(Γ1(𝑁))ℓ−old = 𝜄𝑆𝑘(Γ1(𝑁/ℓ)) + 𝑉ℓ𝑆𝑘(Γ1(𝑁/ℓ)),

where 𝜄 is embedding induced by 𝑓 ↦ 𝑓. In this way,

𝑆𝑘(Γ1(𝑁))old = ∑
ℓ∣𝑁

𝑆𝑘(Γ1(𝑁))ℓ−old,

where the sum runs over prime divisors ℓ of 𝑁. What we will prove is that each of the spaces
𝑆𝑘(Γ1(𝑁))ℓ−old is stable under the diamond operators, the Hecke operators 𝑇𝑝, and their
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adjoints. Note also that if 𝑉 ⊂ 𝑆𝑘(Γ1(𝑁)) is a subspace which stable under an operator 𝑇,
then the orthogonal complement to 𝑉 is stable under the adjoint 𝑇 ∗.

Let 𝑓 ∈ 𝑆𝑘(Γ1(𝑁/ℓ)), and let 𝑇 be one of the Hecke operators above. We must prove that
𝑇 (𝜄𝑓) and 𝑇 (𝑉ℓ𝑓) are in 𝑆𝑘(Γ1(𝑁))ℓ−old. Consider the matrix ( 𝑎 𝑏

𝑐 𝑑 ) ∈ Γ0(𝑁), which defines the
operator ⟨𝑑⟩ on 𝑆𝑘(Γ1(𝑁)) and on 𝑆𝑘(Γ1(𝑁/ℓ)). This shows that ⟨𝑑⟩ preserves 𝜄𝑆𝑘(Γ1(𝑁/ℓ)).
Next, note that that

(ℓ 0
0 1) (𝑎 𝑏

𝑐 𝑑) = ( 𝑎 𝑏ℓ
𝑐/ℓ 𝑑 ) (ℓ 0

0 1) .

Since 𝑐/ℓ is an integer which is divisible by 𝑁/ℓ, the matrix ( 𝑎 𝑏ℓ
𝑐/ℓ 𝑑 ) defines the operator ⟨𝑑⟩

on 𝑆𝑘(Γ1(𝑁/ℓ)). Therefore the matrix equality above gives ⟨𝑑⟩(𝑉ℓ𝑓) = 𝑉ℓ(⟨𝑑⟩𝜄𝑓).

Next we prove that the operators 𝑇𝑝 also preserve 𝑆𝑘(Γ1(𝑁))ℓ−old. If 𝑝 does not divide 𝑁 this
is easy to show that 𝑇𝑝 preserves both 𝑉ℓ𝑆𝑘(Γ1(𝑁/ℓ)) and 𝜄𝑆𝑘(Γ1(𝑁/ℓ)). When 𝑝 does divide
𝑁 but 𝑝 ≠ ℓ, the same argument works. We now consider 𝑇ℓ. Suppose that ℓ divides 𝑁 exactly
once. Then

𝑇ℓ(𝜄𝑓) = 𝜄𝑈ℓ𝑓, and 𝑇ℓ(𝑉ℓ𝑓) = 𝜄𝑓.

However, in 𝑆𝑘(Γ1(𝑁/ℓ)) we have

𝜄𝑇ℓ𝑓 = 𝑇ℓ(𝜄𝑓) + ℓ𝑘−1𝑉ℓ(⟨ℓ⟩𝑓), so 𝑇ℓ(𝜄𝑓) = 𝜄𝑇ℓ𝑓 − ℓ𝑘−1𝑉ℓ(⟨ℓ⟩𝑓).

In particular we see that 𝑇ℓ(𝜄𝑓) and 𝑇ℓ(𝑉ℓ𝑓) are in 𝑆𝑘(Γ1(𝑁))ℓ−old.

Finally if ℓ2 divides 𝑁 then 𝑇ℓ acts as 𝑈ℓ in both 𝑆𝑘(Γ1(𝑁/ℓ)) and 𝑆𝑘(Γ1(𝑁)), and hence

𝑇ℓ𝜄𝑓 = 𝜄𝑇ℓ𝑓, 𝑇ℓ𝑉𝑑𝑓 = 𝜄𝑓.

It only remains to show that the adjoint of 𝑇𝑝 preserves 𝑆𝑘(Γ1(𝑁))ℓ−old when 𝑝 divides 𝑁
(when 𝑝 does not divide 𝑁, the adjoints of Hecke operators are in the Hecke algebra and hence
preserves the old subspace. In this case, consider the Fricke operator 𝑤𝑁 acting on 𝑆𝑘(Γ1(𝑁))
by

𝑓 ↦ 𝑓|𝑘𝑊𝑁, 𝑊𝑁 = ( 0 −1
𝑁 0 ) .

(note that 𝑊𝑁 normalizes Γ1(𝑁)). We can check:

(𝑤𝑁𝑓)(𝑧) = 𝑧−𝑘𝑓(−1/(𝑁𝑧)).

Also, note that 𝑊𝑁 ( 1 0
0 𝑝 ) 𝑊 −1

𝑁 = ( 𝑝 0
0 1 ), and thus 𝑇 ∗

𝑝 = 𝑤−1
𝑁 𝑇𝑝𝑤𝑁. One can then compute:

𝑤𝑁𝜄𝑓 = ℓ𝑘𝑉ℓ𝑤𝑁/ℓ𝑓, and 𝑤𝑁𝑉ℓ𝑓 = 𝜄𝑤𝑁/ℓ𝑓.

Therefore 𝑤𝑁 (and hence 𝑇 ∗
𝑝 ) preserves the old subspace.

We say that 𝑓 ∈ 𝑆𝑘(Γ1(𝑁))new is a if it is an eigenform for all Hecke operators, which is
normalized so that the leading coefficient is 1.
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Theorem 4.9. Consider the space 𝑆𝑘(Γ1(𝑁))new for 𝑁 ≥ 1.

1. The space 𝑆𝑘(Γ1(𝑁))new has a basis of newforms.

2. If 𝑓 ∈ 𝑆𝑘(Γ1(𝑁))new is an eigenvector for {𝑇𝑞}𝑞∤𝑁 then 𝑓 is a scalar multiple of a newform,
and hence an eigenvector for all the Hecke operators.

3. If 𝑓 ∈ 𝑆𝑘(Γ1(𝑁))new and 𝑔 ∈ 𝑆𝑘(Γ1(𝑀))new are both newforms satisfying 𝑎𝑞(𝑓) = 𝑎𝑞(𝑔)
for all but finitely many primes 𝑞, then 𝑁 = 𝑀 and 𝑓 = 𝑔.

Proof. This was proven by Atkin–Lehner in 1970 and a partial proof can be found in [3].

Corollary 4.7.

1. If 𝑓 is a newform, then there is a Dirichlet character 𝜒 such that 𝑓 ∈ 𝑆𝑘(Γ0(𝑁), 𝜒).

2. If {𝜆𝑛}(𝑛,𝑁)=1 is a system of eigenvalues for the 𝑇𝑛 such that (𝑛, 𝑁) = 1, then ∃! newform
𝑓 ∈ 𝑆𝑘(Γ1(𝑀))new for some 𝑀 ∣ 𝑁, such that 𝑇𝑛𝑓 = 𝜆𝑛𝑓 for all 𝑛 satisfying (𝑛, 𝑁) = 1.

Finally, we see that the new subspaces give a complete description of 𝑆𝑘(Γ1(𝑁)) and
𝑆𝑘(Γ0(𝑁)).

Theorem 4.10. There are direct sum decompositions

𝑆𝑘(Γ1(𝑁)) = ⨁
𝑀∣𝑁

⨁
𝑑𝑀∣𝑁

𝑉𝑑 (𝑆𝑘(Γ1(𝑀))new) ,

and
𝑆𝑘(Γ0(𝑁)) = ⨁

𝑀∣𝑁
⨁

𝑑𝑀∣𝑁
𝑉𝑑 (𝑆𝑘(Γ0(𝑀))new) .

Proof. Write 𝑆𝑘(Γ1(𝑁)) = 𝑊1 ⊕ ⋯ ⊕ 𝑊𝑡, where each of the 𝑊𝑖 is a simultaneous eigenspace
for {𝑇𝑛}(𝑛,𝑁)=1 ∪ {⟨𝑛⟩}. Each form 𝑓 ∈ 𝑊𝑖 has the same “package” of eigenvalues {𝜆𝑛}(𝑛,𝑁)=1.
Therefore by Corollary 4.7 this 𝑓 comes from a unique newform 𝑓𝑖 ∈ 𝑆𝑘(Γ1(𝑀𝑖))new for some
𝑀𝑖 ∣ 𝑁. Therefore

𝑊𝑖 = ⨁
𝑑𝑀𝑖∣𝑁

ℂ𝑉𝑑(𝑓𝑖)

as wanted. Since each of these spaces is stable under the diamond operators, we get the second
decomposition by further taking the subspaces on which they act trivially.
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5 Eisenstein series

The conclusion of the previous chapter has been that 𝑆𝑘(Γ1(𝑁)) has a basis of eigenforms
each of them new at some level dividing 𝑁. For a general congruence subgroup Γ, recall that
the Petersson inner product allowed us to define an “orthogonal complement” to 𝑆𝑘(Γ), the
Eisenstein subspace

ℰ𝑘(Γ) = {𝑓 ∈ 𝑀𝑘(Γ) | ⟨𝑓, 𝑔⟩Γ = 0 ∀𝑔 ∈ 𝑆𝑘(Γ)}.

The goal for this chapter is to find a natural basis for ℰ𝑘(Γ).

5.1 Eisenstein series for congruence subgroups

Recall the Eisenstein series for SL2(ℤ) that we saw at the beginning:

𝐺𝑘(𝑧) = ∑ ′

(𝑚,𝑛)∈ℤ2

1
(𝑚𝑧 + 𝑛)𝑘 .

In order to generalize this construction, we need to put it in a more intrinsic form. Recall that
the stabilizer of the cusp ∞ is

𝑃∞ = SL2(ℤ)∞ = {± ( 1 𝑏
0 1 ) | 𝑏 ∈ ℤ}.

Write also 𝑃 +
∞ = {( 1 𝑏

0 1 ) | 𝑏 ∈ ℤ}.

Lemma 5.1. The map ( 𝑎 𝑏
𝑐 𝑑 ) ↦ (𝑐, 𝑑) induces a bijection

𝑃 +
∞\SL2(ℤ)

∼
⟶ {(𝑐, 𝑑) ∈ ℤ2 | gcd(𝑐, 𝑑) = 1}.

Proof. Surjectivity of the map follows from Bézout: given (𝑐, 𝑑) with gcd(𝑐, 𝑑) = 1 we can find
𝑎, 𝑏 ∈ ℤ such that 𝑎𝑑 − 𝑏𝑐 = 1. Moreover, any solution to the equation 𝑥𝑑 − 𝑦𝑐 = 1 is of the
form

𝑥 = 𝑎 + 𝑡𝑐, 𝑦 = 𝑏 + 𝑡𝑑, 𝑡 ∈ ℤ.
That is, the preimage of (𝑐, 𝑑) consists of the set of matrices of the form

(𝑎 + 𝑡𝑐 𝑏 + 𝑡𝑑
𝑐 𝑑 ) = (1 𝑡

0 1) (𝑎 𝑏
𝑐 𝑑) , 𝑡 ∈ ℤ.
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This lemma allows us to rewrite 𝐺𝑘(𝑧) in a different way.

Proposition 5.1. We have

𝐺𝑘(𝑧) = 𝜁(𝑘) ∑
𝛾∈𝑃 +

∞\SL2(ℤ)
𝑗(𝛾, 𝑧)−𝑘.

Proof. Write a pair (𝑚, 𝑛) ∈ ℤ2 −{(0, 0)} as (𝑔𝑐, 𝑔𝑑), with 𝑔 = gcd(𝑚, 𝑛) and (𝑐, 𝑑) coprime.
Therefore

𝐺𝑘(𝑧) =
∞

∑
𝑔=1

∑
(𝑐,𝑑)∈ℤ2

gcd(𝑐,𝑑)=1

1
𝑔𝑘(𝑐𝑧 + 𝑑)𝑘

=
∞

∑
𝑔=1

1
𝑔𝑘 ∑

(𝑐,𝑑)∈ℤ2

gcd(𝑐,𝑑)=1

1
(𝑐𝑧 + 𝑑)𝑘 = 𝜁(𝑘) ∑

𝛾∈𝑃 +
∞\SL2(ℤ)

𝑗(𝛾, 𝑧)−𝑘.

Let now Γ be an arbitrary congruence subgroup, and define Γ∞ = Γ ∩ 𝑃∞ and Γ+
∞ = Γ ∩ 𝑃 +

∞.

Definition 5.1. The of weight 𝑘 attached to Γ and to the cusp ∞ is

𝐺𝑘,Γ,∞(𝑧) = ∑
𝛾∈Γ+

∞\Γ
𝑗(𝛾, 𝑧)−𝑘.

Since 𝑗(ℎ𝛾, 𝑧) = 𝑗(𝛾, 𝑧) whenever ℎ ∈ Γ+
∞, the terms in the above sum are well-defined.

Moreover, since Γ+
∞\Γ injects in 𝑃 +

∞\SL2(ℤ), the series above is a sub-series of 𝐺𝑘(𝑧) and
therefore it converges. So in particular, 𝐺𝑘,Γ,∞ is holomorphic on ℍ.

Proposition 5.2. If either

1. 𝑘 is even, or

2. 𝑘 is odd, −𝐼 ∉ Γ and ∞ is a regular cusp of Γ

then 𝐺𝑘,Γ,∞ belongs to 𝑀𝑘(Γ). Moreover, 𝐺𝑘,Γ,∞(∞) ≠ 0 and 𝐺𝑘,Γ,∞ vanishes at all cusps
𝑠 ≠ ∞.

If 𝑘 is odd and either −𝐼 ∈ Γ or ∞ is an irregular cusp of Γ, then 𝐺𝑘,Γ,∞ = 0.
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Proof. It is easy to show that 𝐺𝑘,Γ,∞ = 0 if the conditions stated in the proposition are
satisfied. The computation showing that 𝐺𝑘,Γ,∞ is weakly-modular of weight 𝑘 for Γ is also
straightforward, using the cocycle condition of 𝑗(𝛾, 𝑧).

Next we compute the value 𝐺𝑘,Γ,∞(∞). We need to understand how 𝑗(𝛾, 𝑧)−𝑘 behaves when
ℑ𝑧 ⟶ ∞. Suppose that 𝛾 = ( 𝑎 𝑏

𝑐 𝑑 ). Then

lim
ℑ𝑧⟶∞

𝑗(𝛾, 𝑧)−𝑘 = lim
ℑ𝑧⟶∞

(𝑐𝑧 + 𝑑)−𝑘 = {
𝑑−𝑘 if 𝑐 = 0,
0 if 𝑐 ≠ 0.

Note also that 𝑐 = 0 ⟺ 𝛾 ∈ Γ∞. Therefore we may calculate

lim
ℑ𝑧⟶∞

𝐺𝑘,Γ,∞(𝑧) = lim
ℑ𝑧⟶∞

∑
𝛾∈Γ+

∞\Γ
𝑗(𝛾, 𝑧)−𝑘

= ∑
𝛾∈Γ+

∞\Γ∞

𝑗(𝛾, 𝑧)−𝑘

= {
1 if Γ+

∞ = Γ∞,
1 + (−1)𝑘 if [Γ∞ ∶ Γ+

∞] = 2.
=

⎧{
⎨{⎩

1 if Γ+
∞ = Γ∞,

2 if [Γ∞ ∶ Γ+
∞] = 2 and 𝑘 is even,

0 if [Γ∞ ∶ Γ+
∞] = 2 and 𝑘 is odd.

The last case does not occur, by assumption. Hence 𝐺𝑘,Γ,∞(∞) ∈ {1, 2} is nonzero.

Consider now a cusp 𝑠 of Γ, different from ∞. Let 𝛾𝑠 ∈ SL2(ℤ) satisfy 𝛾𝑠∞ = 𝑠, so that
𝐺𝑘,Γ,∞(𝑠) = (𝐺𝑘,Γ,∞|𝑘𝛾𝑠)(∞). Note that

(𝐺𝑘,Γ,∞|𝑘𝛾𝑠)(𝑧) = ∑
𝛾∈Γ+

∞\Γ
𝑗(𝛾, 𝛾𝑠𝑧)−𝑘𝑗(𝛾𝑠, 𝑧)−𝑘 = ∑

𝛾∈Γ+
∞\Γ

𝑗(𝛾𝛾𝑠, 𝑧)−𝑘.

Since 𝛾𝛾𝑠 has nonzero bottom-left entry (otherwise 𝛾𝛾𝑠 would stabilize infinity, which does
not), then each of the terms approaches 0 as ℑ𝑧 ⟶ ∞ and we obtain the desired vanishing.

The next goal is to construct Eisenstein series that are non-vanishing at each of the other cusps
𝑠 of Γ (and vanish at the cusps 𝑠′ ≠ 𝑠). This is done by translating 𝐺𝑘,Γ,∞ by the matrices
𝛾𝑠.

Lemma 5.2. Let 𝑠 be a cusp of Γ and let 𝛾𝑠 ∈ SL2(ℤ) be a matrix such that 𝛾𝑠∞ = 𝑠. Define

𝐺𝑘,Γ,𝑠 = 𝐺𝑘,𝛾−1
𝑠 Γ𝛾𝑠,∞|𝑘𝛾−1

𝑠 = ∑
𝛾∈Γ+

𝑠 \Γ
𝑗(𝛾−1

𝑠 𝛾, 𝑧), where Γ+
𝑠 = {𝛾 ∈ Γ | 𝛾−1

𝑠 𝛾𝛾𝑠 = ( 1 ∗
0 1 )}.

If 𝑘 is odd, suppose that −𝐼 ∉ Γ, and 𝑠 is a regular cusp of Γ. Then 𝐺𝑘,Γ,𝑠 belongs to ℰ𝑘(Γ),
does not vanish at 𝑠 and vanishes at all other cusps 𝑠′ ≠ 𝑠 of Γ.
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Although there is a choice of 𝛾𝑠 involved, the form 𝐺𝑘,Γ,𝑠 is well defined when 𝑘 is even, and
well-defined up to sign when 𝑘 is odd.

We next show that the Eisenstein series we have just introduced belong in fact to the Eisenstein
subspace ℰ𝑘(Γ).

Proposition 5.3. Let Γ be a congruence subgroup, let 𝑘 ≥ 3 be an integer and let 𝑠 be a cusp
of Γ. Then 𝐺𝑘,Γ,𝑠 belongs to ℰ𝑘(Γ).

Proof. We need to prove that for each 𝑓 ∈ 𝑆𝑘(Γ) we have ⟨𝑓, 𝐺𝑘,Γ,𝑠⟩Γ = 0. From the definition
of the Petersson inner product there is an equality

⟨𝑓, 𝑔⟩Γ = ⟨𝑓|𝑘𝛾, 𝑔|𝑘𝛾⟩𝛾−1Γ𝛾.

Thus we may reduce to showing ⟨𝑓, 𝐺𝑘,Γ,∞⟩Γ = 0 for all 𝑓 ∈ 𝑆𝑘(Γ). Writing the definition of
the pairing and exchanging the sum with the integral gives

⟨𝑓, 𝐺𝑘,Γ,∞⟩Γ = ∑
𝛾∈Γ+

∞\Γ
∫

𝐷Γ

𝑓(𝑧)𝑗(𝛾, 𝑧)−𝑘ℑ(𝑧)𝑘𝑑𝜇(𝑧).

Make the change of variables 𝑤 = 𝛾𝑧, so

𝑓(𝑤) = 𝑗(𝛾, 𝑧)𝑘𝑓(𝑧), ℑ(𝑤) = |𝑗(𝛾, 𝑧)|−2ℑ(𝑧).

This gives

⟨𝑓, 𝐺𝑘,Γ,∞⟩Γ = ∑
𝛾∈Γ+

∞\Γ
∫

𝑤∈𝛾𝐷Γ

𝑓(𝑤)𝑦𝑘 𝑑𝑥𝑑𝑦
𝑦2 = ∫

𝑤∈Γ+
∞\ℍ

𝑓(𝑤)𝑦𝑘−2𝑑𝑥𝑑𝑦.

Suppose now that ∞ has width ℎ and that the 𝑞-expansion of 𝑓 is ∑ 𝑎𝑛𝑞𝑛
ℎ . Then

⟨𝑓, 𝐺𝑘,Γ,∞⟩Γ = ∫
Γ+

∞\ℍ
(

∞
∑
𝑛=1

𝑎𝑛𝑒2𝜋𝑖𝑛𝑤/ℎ) 𝑦𝑘−2𝑑𝑥𝑑𝑦

= ∫
ℎ

𝑥=0
∫

∞

𝑦=0
(

∞
∑
𝑛=1

𝑎𝑛𝑒2𝜋𝑖𝑛𝑥/ℎ𝑒−2𝜋𝑛𝑦/ℎ) 𝑦𝑘−2𝑑𝑥𝑑𝑦

=
∞

∑
𝑛=1

𝑎𝑛 ∫
ℎ

𝑥=0
𝑒2𝜋𝑖𝑛𝑥/ℎ𝑑𝑥 ∫

∞

𝑦=0
𝑒−2𝜋𝑛𝑦/ℎ𝑦𝑘−2𝑑𝑦.

Since 𝑛 ≥ 1, the integrals on 𝑥 vanish and thus we get the result.

We end the section by stating essentially that the Eisenstein series give a basis for ℰ𝑘(Γ). We
do this by giving the dimension of the Eisenstein space, and then exhibiting a the explicit
basis.
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Theorem 5.1. Let Γ be a congruence subgroup, let 𝑘 be an integer, let 𝜀Γ be the number of
cusps of Γ and let 𝜀reg

Γ ≤ 𝜀Γ be the number of regular cusps. Then:

dimℂ ℰ𝑘(Γ) =

⎧
{
{
{
{
⎨
{
{
{
{
⎩

0 if 𝑘 < 0, or 𝑘 odd and − 𝐼 ∈ Γ,
1 if 𝑘 = 0,
𝜀reg

Γ /2 if 𝑘 = 1 and − 𝐼 ∉ Γ,
𝜀Γ − 1 if 𝑘 = 2,
𝜀Γ if 𝑘 even, and 𝑘 ≥ 4,
𝜀reg

Γ if 𝑘 odd, 𝑘 ≥ 3, and − 𝐼 ∉ Γ.

5.2 Eisenstein series for Γ1(𝑁)

We now specialize the above construction in the case where Γ = Γ1(𝑁) for any positive integer
𝑁. In fact, we will construct a basis of Hecke eigenforms.

Recall that in Chapter 4 we introduced Dirichlet characters modulo 𝑁. Let 𝑀 and 𝑁 be
positive integers with 𝑀 ∣ 𝑁. A Dirichlet character 𝜒 modulo 𝑀 can be lifted to a Dirichlet
character 𝜒(𝑁) modulo 𝑁, by

𝜒(𝑁)(𝑚) = {
𝜒(𝑚) if gcd(𝑚, 𝑁) = 1,
0 if gcd(𝑚, 𝑁) > 1.

Definition 5.2. Let 𝜒∶ ℤ ⟶ ℂ be a Dirichlet character modulo 𝑁. The of 𝜒 is the smallest
divisor 𝑀 of 𝑁 such that 𝜒 is the lift of a Dirichlet character modulo 𝑀. A Dirichlet character
modulo 𝑁 is if it has conductor 𝑁.

Example 5.1. The only character modulo one is 1∶ ℤ ⟶ ℂ, the constant function 1. If 𝑁 is
any positive integer, the lift of 1 to a Dirichlet character modulo 𝑁 is the function

1(𝑁) ∶ ℤ ⟶ ℂ, 𝑚 ↦ {
1 gcd(𝑚, 𝑁) = 1,
0 gcd(𝑚, 𝑁) > 1.

Example 5.2. For each prime number 𝑝, and each integer 𝑎 we define the

(𝑎
𝑝

) =
⎧{
⎨{⎩

0 if 𝑝 ∣ 𝑎,
1 if 𝑝 ∣ 𝑎 and 𝑎 is a square modulo 𝑝,
−1 if 𝑝 ∣ 𝑎 and 𝑎 is not a square modulo 𝑝,

Then ( •
𝑝) is a Dirichlet character modulo 𝑝. Its conductor is 𝑝 if 𝑝 ≠ 2, and 1 if 𝑝 = 2.
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Example 5.3. Let 𝜒1 be a Dirichlet character modulo 𝑁1 and let 𝜒2 be a Dirichlet character
modulo 𝑁2. If 𝑀 is a common multiple of 𝑁1 and 𝑁2, one may consider the product 𝜒 =
𝜒1𝜒2 = 𝜒(𝑀)

1 𝜒(𝑀)
2 . This is a character with modulus 𝑀. Note however that the conductor is

not multiplicative: if 𝜒 is a quadratic character of conductor 𝑁, say, then 𝜒2 is the trivial
character which will have conductor 1.

In order to give the 𝑞-expansions of the Eisenstein series attached to a pair of characters, we
need some new notation. We will need the folloing generalization of the divisor function. If 𝜒1
and 𝜒2 are Dirichlet characters, define

𝜎𝜒1,𝜒2
𝑘−1 (𝑛) = ∑

𝑑∣𝑛
𝜒1(𝑛/𝑑)𝜒2(𝑑)𝑑𝑘−1.

The following theorem gives the 𝑞-expansions of Eisenstein series that will form a basis of
eigenforms for the Eisenstein space.

Theorem 5.2. Let 𝜒1, 𝜒2 be primitive Dirichlet characters modulo 𝑁1 and 𝑁2, respectively.
Let 𝜒 = 𝜒1𝜒2 be the product as a character modulo 𝑁1𝑁2 (not necessarily primitive). Let 𝑘 ≥ 3
be such that 𝜒(−1) = (−1)𝑘. Define

𝛿(𝜒1) = {
1 if 𝜒1 = 11,
0 else.

and let 𝐿(𝜒2, 𝑠) = ∑∞
𝑛=1 𝜒2(𝑛)𝑛−𝑠 be the 𝐿-series of 𝜒2. Then the function 𝐸𝜒1,𝜒2

𝑘 defined by

𝐸𝜒1,𝜒2
𝑘 (𝑧) = 𝛿(𝜒1)𝐿(𝜒2, 1 − 𝑘) + 2

∞
∑
𝑛=1

𝜎𝜒1,𝜒2
𝑘−1 (𝑛)𝑞𝑛

belongs to ℰ𝑘(Γ1(𝑁1𝑁2)). Moreover, it is a Hecke eigenform with character 𝜒.

The modular form 𝐸𝜒1,𝜒2
𝑘 is called the Eisenstein series of weight 𝑘 associated to (𝜒1, 𝜒2).

When 𝑘 = 1 the theorem remains true, although in this case 𝐸𝜒1,𝜒2
1 = 𝐸𝜒2,𝜒1

1 . When 𝑘 = 2,
then we must require in addition that 𝜒1 and 𝜒2 must not be both trivial. If both 𝜒1 and 𝜒2
are trivial, then we know that 𝐸2(𝑧) = 1 − 24 ∑𝑛≥1 𝜎1(𝑛)𝑞𝑛 is not a modular form. However,
for any 𝑁 > 1 the function

𝐸(𝑁)
2 (𝑧) = 𝐸2(𝑧) − 𝑁𝐸2(𝑁𝑧)

belongs to 𝑀2(Γ1(𝑁)).

Theorem 5.3. Let 𝑘 ≥ 3, let 𝑁 ≥ 1 and let 𝜒 be a Dirichlet character modulo 𝑁 such that
𝜒(−1) = (−1)𝑘. Then there is a decomposition

ℰ𝑘(Γ0(𝑁), 𝜒) = ⨁
𝑑∣𝑁

⨁
𝑁1𝑁2∣ 𝑁

𝑑

⨁
𝜒1𝜒2=𝜒

ℂ𝑉𝑑(𝐸𝜒1,𝜒2
𝑘 ),

where the inner sum runs through factorizations of 𝜒 into primitive Dirichlet characters 𝜒1
and 𝜒2 modulo 𝑁1 and 𝑁2.
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6 L-functions

In this chapter we study the connection of modular forms with 𝐿-functions.

6.1 Basic definitions

Let 𝑓 ∈ 𝑀𝑘(Γ1(𝑁)) be a modular form, given by a 𝑞-expansion 𝑓 = ∑∞
𝑛=0 𝑎𝑛𝑞𝑛.

Definition 6.1. The of 𝑓 is the function of 𝑠 ∈ ℂ given formally as

𝐿(𝑓, 𝑠) =
∞

∑
𝑛=1

𝑎𝑛𝑛−𝑠.

Proposition 6.1. If 𝑓 ∈ 𝑆𝑘(Γ1(𝑁)) is a cusp form then 𝐿(𝑓, 𝑠) converges absolutely for all
𝑠 such that ℜ(𝑠) > 𝑘/2 + 1. If 𝑓 ∈ 𝑀𝑘(Γ1(𝑁)) is not a cusp form then 𝐿(𝑓, 𝑠) converges
absolutely for all 𝑠 with ℜ(𝑠) > 𝑘.

Proof. We have seen in Theorem 1.15 and Corollary 1.9 that |𝑎𝑛| ≤ 𝑀𝑛𝑟(𝑘) for some constant
𝑀, where 𝑟(𝑘) = 𝑘/2 when 𝑓 is a cusp form and 𝑟(𝑘) = 𝑘 − 1 when 𝑓 is not a cusp form.
Although those results were stated and proven only for level 1, they hold true (with essentially
the same proofs) for higher levels. Therefore if ℜ(𝑠) > 𝑟(𝑘) + 1 then

| ∑
𝑛≥0

𝑎𝑛𝑛−𝑠| ≤ 𝑀 ∑
𝑛≥0

𝑛𝑟(𝑘)−ℜ(𝑠) < ∞.

The 𝐿-functions attached to normalized eigenforms have a very remarkable decomposition,
known as . In fact, having this property characterizes normalized eigenforms, as the following
result states.

Theorem 6.1. Let 𝑓 ∈ 𝑀𝑘(Γ0(𝑁), 𝜒) be a modular form with 𝑞-expansion 𝑓 = ∑𝑛≥0 𝑎𝑛𝑞𝑛.
Then 𝑓 is a normalized eigenform if and only if 𝐿(𝑓, 𝑠) has an Euler product expansion

𝐿(𝑓, 𝑠) = ∏
𝑝 prime

(1 − 𝑎𝑝𝑝−𝑠 + 𝜒(𝑝)𝑝𝑘−1−2𝑠)−1.
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Proof. By Proposition 4.5 we need to show that conditions (1), (2) and (3) of loc.cit. are
equivalent to 𝐿(𝑓, 𝑠) having an Euler product. For a fixed prime 𝑝, condition (2) says

𝑎𝑝𝑟(𝑓) = 𝑎𝑝(𝑓)𝑎𝑝𝑟−1(𝑓) − 𝑝𝑘−1𝜒(𝑝)𝑎𝑝𝑟−2(𝑓).

Multiplying by 𝑡𝑟 and summing over all 𝑟 ≥ 2 we see that (2) is equivalent to
∞

∑
𝑟=2

𝑎𝑝𝑟(𝑓)𝑡𝑟 = 𝑎𝑝(𝑓)𝑡
∞

∑
𝑟=1

𝑎𝑝𝑟(𝑓) − 𝑝𝑘−1𝜒(𝑝)𝑡2
∞

∑
𝑟=0

𝑎𝑝𝑟(𝑓),

or

(∑
𝑟≥0

𝑎𝑝𝑟(𝑓)𝑡𝑟) (1 − 𝑎𝑝(𝑓)𝑡 + 𝜒(𝑝)𝑝𝑘−1𝑡2) = 𝑎1(𝑓) + 𝑎𝑝(𝑓)𝑡(1 − 𝑎1(𝑓)).

Since we are assuming that 𝑎1(𝑓) = 1 we get, by substituting 𝑡 = 𝑝−𝑠, the equality
∞

∑
𝑟=0

𝑎𝑝𝑟(𝑓)𝑝−𝑟𝑠 = (1 − 𝑎𝑝(𝑓)𝑝−𝑠 + 𝜒(𝑝)𝑝𝑘−1−2𝑠)−1. (6.1)

Conversely, if this equality holds then letting 𝑠 approach ∞ we get 𝑎1(𝑓) = 1, and the other
implications can also be reversed to show that Equation 6.1 is equivalent to conditions (1) and
(2) for the 𝑎𝑛(𝑓)’s.

The Fundamental Theorem of Arithmetic implies that if 𝑔 is any function of prime powers,
then

∏
𝑝

∞
∑
𝑟=0

𝑔(𝑝𝑟) =
∞

∑
𝑛=1

∏
𝑝𝑟‖𝑛

𝑔(𝑝𝑟).

Using this fact, it is easy to see that Equation 6.1 and condition (3) are equivalent to the
existence of the Euler product, thus finishing the proof.

6.2 L-functions of Eisenstein series

Let 𝜒∶ ℤ ⟶ ℂ be a primitive Dirichlet character modulo 𝑁. One can attach an L-function to
𝜒 via the formula

𝐿(𝜒, 𝑠) =
∞

∑
𝑛=1

𝜒(𝑛)𝑛−𝑠, ℜ(𝑠) > 1.

Proposition 6.2. The L-function of 𝜒 extends to an entire function of on ℂ unless 𝜒 = 1, in
which case 𝐿(1, 𝑠) = 𝜁(𝑠) has a simple pole at 𝑠 = 1.

Proof. Omitted.

We also have an Euler product:
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Proposition 6.3. There is an Euler product decomposition

𝐿(𝜒, 𝑠) = ∏
𝑝 prime

1
1 − 𝜒(𝑝)𝑝−𝑠 .

Proof. Exercise.

We have defined the L-function of any modular form. In particular, if 𝜒1 and 𝜒2 are primitive
Dirichlet characters modulo 𝑁1 and 𝑁2 respectively, then we can consider the L-function
𝐿(𝐸𝜒1,𝜒2

𝑘 , 𝑠).

Example 6.1. Consider the Eisenstein series for the full modular group 𝐸𝑘(𝑧) ∈ 𝑀𝑘(SL2(ℤ)).
In Proposition 4.4 we have seen that 𝐸𝑘 is an eigenform for all the Hecke algebra, satisfying
𝑇𝑝𝐸𝑘 = 𝜎𝑘−1(𝑝)𝐸𝑘. If we normalize 𝐸𝑘 using its first coefficient (instead of the zero-th) and
call the resulting Eisenstein series ̄𝐸𝐾, then we have 𝑎𝑝( ̄𝐸𝑘) = 𝜎𝑘−1(𝑝) = 1 + 𝑝𝑘−1. Therefore

𝐿( ̄𝐸𝑘, 𝑠) = ∏
𝑝 prime

1
1 − (1 + 𝑝𝑘−1)𝑝−𝑠 + 𝑝𝑘−1−2𝑠

= ∏
𝑝 prime

1
1 − 𝑝−𝑠

1
1 − 𝑝𝑘−1−𝑠 = 𝜁(𝑠)𝜁(𝑠 − 𝑘 + 1).

The factorization of the example holds in much more generality. Denote by ̄𝐸𝜒1,𝜒2
𝑘 = 1

2𝐸𝜒1,𝜒2
𝑘 ,

where 𝐸𝜒1,𝜒2
𝑘 were defined in Theorem 5.2.

Proposition 6.4. The L-function attached to the Eisenstein series ̄𝐸𝜒1,𝜒2
𝑘 has a factorization

𝐿( ̄𝐸𝜒1,𝜒2
𝑘 , 𝑠) = 𝐿(𝜒1, 𝑠)𝐿(𝜒2, 𝑠 − 𝑘 + 1).

Proof. Exercise.

The idea that one can extract from this is that the Eisenstein series are quite simple, and their
L-functions are not too interesting since they can be understood from the (simpler) L-functions
attached to characters. In stark contrast, the L-functions attached to cusp forms have much
deeper connections.
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6.3 L-functions of cusp forms

We focus from now on on cusp forms. The next striking property of L-functions of cusp forms
is known as , a symmetry property of deep consequences. In order to state it precisely, we first
define the , which appears often in number theory, as

Γ(𝑠) = ∫
∞

0
𝑡𝑠𝑒−𝑡 𝑑𝑡

𝑡
.

Note that Γ(𝑛 + 1) = 𝑛! for all integers 𝑛 ≥ 1, so we can think of Γ as an analytic function
interpolating the factorials. The Gamma-function enters also in the definition of another
complex function, for which the symmetry property is more apparent.

Definition 6.2. The of 𝑓 ∈ 𝑆𝑘(Γ1(𝑁)) is

Λ(𝑓, 𝑠) = (2𝜋)−𝑠Γ(𝑠)𝐿(𝑓, 𝑠), ℜ(𝑠) > 𝑘/2 + 1.

The next result gives an integral formula for the completed L-function.

Proposition 6.5. We have

Λ(𝑓, 𝑠) = ∫
∞

0
𝑓(𝑖𝑡)𝑡𝑠 𝑑𝑡

𝑡
, ℜ(𝑠) > 𝑘/2 + 1.

This is called the of 𝑓.

Proof. We first remark that the integral makes sense, since

∣∫
∞

0
𝑓(𝑖𝑡)𝑡𝑠 𝑑𝑡

𝑡
∣ << ∫

∞

0
𝑡−𝑘/2+𝑠 𝑑𝑡

𝑡
,

which converges for ℜ(𝑠) > 𝑘/2 + 1. Now we compute

Λ(𝑓, 𝑠) = (2𝜋)−𝑠 (∫
∞

0
𝑡𝑠𝑒−𝑡 𝑑𝑡

𝑡
) ∑ 𝑎𝑛𝑛−𝑠 =

∞
∑
𝑛=1

𝑎𝑛 ∫
∞

0
( 𝑡

2𝜋𝑛
)

𝑠
𝑒−𝑡 𝑑𝑡

𝑡
.

By doing a change of variables 𝑡 ↦ 𝑡/(2𝜋𝑛) in each term, the above expression becomes

∞
∑
𝑛=1

𝑎𝑛 ∫
∞

0
𝑡𝑠𝑒−2𝜋𝑛𝑡 𝑑𝑡

𝑡
= ∫

∞

0
(

∞
∑
𝑛=1

𝑎𝑛𝑒−2𝜋𝑛𝑡) 𝑡𝑠 𝑑𝑡
𝑡

= ∫
∞

0
𝑓(𝑖𝑡)𝑡𝑠 𝑑𝑡

𝑡
,

which gives the desired equality.

88



In order to extend Λ(𝑓, 𝑠) (and thus 𝐿(𝑓, 𝑠)) to 𝑠 ∈ ℂ we need to avoid integrating near the
real axis. We will also need to consider the operator 𝑊𝑁 given by

𝑊𝑁(𝑓) = 𝑖𝑘𝑁1−𝑘/2𝑓|𝑘 ( 0 −1
𝑁 0 ) .

It is an idempotent operator: 𝑊 2
𝑁 = 𝑊𝑁, and one easily sees that it is self-adjoint: ⟨𝑊𝑁𝑓, 𝑔⟩ =

⟨𝑓, 𝑊𝑁𝑔⟩ for 𝑓, 𝑔 ∈ 𝑆𝑘(Γ1(𝑁)). Consider the + and −-eigenspaces

𝑆𝑘(Γ1(𝑁))± = {𝑓 ∈ 𝑆𝑘(Γ1(𝑁)) | 𝑊𝑁𝑓 = ±𝑓},

which gives an orthogonal decomposition of 𝑆𝑘 = 𝑆+
𝑘 ⊕ 𝑆−

𝑘 .

Theorem 6.2. Suppose that 𝑓 ∈ 𝑆𝑘(Γ1(𝑁))±. Then the function Λ(𝑓, 𝑠) extends to an entire
function on ℂ, which satisfies the functional equation

Λ(𝑓, 𝑠) = ±𝑁𝑠−𝑘/2Λ(𝑓, 𝑘 − 𝑠).

In particular, the 𝐿-function 𝐿(𝑓, 𝑠) has an analytic continuation to all of ℂ.

Proof. Define Λ𝑁(𝑠) = 𝑁𝑠/2Λ(𝑓, 𝑠), and note that we must show that Λ𝑁(𝑠) = ±Λ𝑁(𝑘 − 𝑠).
By changing 𝑡 ↦ 𝑡/

√
𝑁 we get

Λ𝑁(𝑠) = 𝑁𝑠/2 ∫
∞

0
𝑓(𝑖𝑡)𝑡𝑠 𝑑𝑡

𝑡
= ∫

∞

0
𝑓(𝑖𝑡/

√
𝑁)𝑡𝑠 𝑑𝑡

𝑡
.

We break the integral at 𝑡 = 1. Note that the piece

∫
∞

1
𝑓(𝑖𝑡/

√
𝑁)𝑡𝑠 𝑑𝑡

𝑡

converges to an entire function of 𝑠, because 𝑓(𝑖𝑡/
√

𝑁) = 𝑂(𝑒−2𝜋𝑡/
√

𝑁) when 𝑡 ⟶ ∞. As for
the other part, use that (𝑊𝑁𝑓)(𝑖/(

√
𝑁𝑡)) = 𝑡𝑘𝑓(𝑖𝑡/

√
𝑁) to get

∫
1

0
𝑓(𝑖𝑡/

√
𝑁)𝑡𝑠 𝑑𝑡

𝑡
= ∫

1

0
(𝑊𝑁𝑓)(𝑖/(

√
𝑁𝑡))𝑡𝑠−𝑘 𝑑𝑡

𝑡
= ∫

∞

1
(𝑊𝑁𝑓)(𝑖𝑡/

√
𝑁)𝑡𝑘−𝑠 𝑑𝑡

𝑡
.

Again, since 𝑊𝑛𝑓 = ±𝑓 this converges to an entire function. As for the functional equation,
note that we have obtained

Λ𝑁(𝑠) = ∫
∞

1
(𝑓(𝑖𝑡/

√
𝑁)𝑡𝑠 ± 𝑓(𝑖𝑡/

√
𝑁)𝑡𝑘−𝑠) 𝑑𝑡

𝑡
= ±Λ𝑁(𝑘 − 𝑠).
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6.4 Relation to elliptic curves

Let 𝐸/ℚ be an elliptic curve. It can be thought of as the set cut out by an equation of the
form

𝐸∶ 𝑌 2 = 𝑋3 + 𝐴𝑋 + 𝐵, 𝐴, 𝐵 ∈ ℤ,

such that the discriminant Δ𝐸 of 𝑋3 + 𝐴𝑋 + 𝐵 is nonzero. The coefficients of this equation
can be reduced modulo any prime 𝑝 and the conductor 𝑁𝐸 of 𝐸 is an integer whose prime
divisors are precisely the prime divisors of 𝑁𝐸 (although in general 𝑁𝐸 ≠ Δ𝐸. One can define
an L-function attached to 𝐸 via the following Euler product:

𝐿(𝐸, 𝑠) = ∏
𝑝∣𝑁𝐸

(1 − 𝑎𝑝(𝐸)𝑝−𝑠)−1 ∏
𝑝∤𝑁𝐸

(1 − 𝑎𝑝(𝐸)𝑝−𝑠 + 𝑝1−2𝑠)−1, ℜ(𝑠) > 3/2.

where 𝑎𝑝(𝐸) = 1 + 𝑝 − #𝐸(𝔽𝑝). Here, by 𝐸(𝔽𝑝) we mean the set of points of (the reduction
of) 𝐸 over the finite field 𝔽𝑝, where we always include the “point at infinity”.

It turns out that elliptic curves arise from modular forms, thanks to results of Eichler and
Shimura.

Theorem 6.3. Let 𝑓 ∈ 𝑆2(Γ0(𝑁)) be a normalized eigenform whose Fourier coefficients
𝑎𝑛(𝑓) are all integers. Then there exists an elliptic curve 𝐸𝑓 defined over ℚ such that
𝐿(𝐸𝑓, 𝑠) = 𝐿(𝑓, 𝑠).

Proof. Construction of 𝐸𝑓. Consider the differential form 𝜔𝑓 = 2𝜋𝑖𝑓(𝑧)𝑑𝑧, and write ℍ∗ =
ℍ ∪ ℙ1(ℚ). To a point 𝜏 ∈ ℍ∗ we attach the following complex number

𝜑(𝜏) = ∫
𝜏

∞
𝜔𝑓 ∈ ℂ.

Let 𝛾 ∈ Γ0(𝑁). Then note that

𝛽𝛾 = 𝜑(𝛾𝜏) − 𝜑(𝜏) = ∫
𝛾𝜏

𝜏
𝜔𝑓

does not depend on 𝜏:

∫
𝛾𝜏

𝜏
𝜔𝑓 = ∫

∞

𝜏
𝜔𝑓 + ∫

𝛾∞

∞
𝜔𝑓 + ∫

𝛾𝜏

𝛾∞
𝜔𝑓

= ∫
∞

𝜏
𝜔𝑓 + ∫

𝛾∞

∞
𝜔𝑓 + ∫

𝜏

∞
𝜔𝑓

= ∫
𝛾∞

∞
𝜔𝑓.
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Therefore if denote by Λ𝑓 the following subset of complex numbers

Λ𝑓 = {𝛽𝛾 = ∫
𝛾∞

∞
𝜔𝑓 | 𝛾 ∈ Γ0(𝑁)} ⊂ ℂ,

we get a well-defined map
Γ0(𝑁)\ℍ∗ ⟶ ℂ/Λ𝑓.

One can show that Λ𝑓 is a lattice, and define 𝐸𝑓 to be the elliptic curve corresponding to the
complex torus ℂ/Λ𝑓. It is considerably harder to show that 𝐸𝑓 is defined over ℚ, and that
𝐿(𝐸𝑓, 𝑠) = 𝐿(𝑓, 𝑠).

We may wonder about a converse to the previous result. That is, given an elliptic curve 𝐸 of
conductor 𝑁𝐸, can we find a cusp form of level 𝑁𝐸 having the same L-function as that of 𝐸?
Let us give a name to the elliptic curves 𝐸 satisfying this property.

Definition 6.3. We say that 𝐸 is if there is a newform 𝑓 ∈ 𝑆2(Γ0(𝑁𝐸)) with 𝑎𝑝(𝐸) = 𝑎𝑝(𝑓).
Equivalently, if 𝐿(𝐸, 𝑠) = 𝐿(𝑓, 𝑠).

The following theorem, which gives a positive answer to the question we asked, is one of the
hallmarks of XX-century number theory. Its proof, spanning hundreds of pages of difficult
mathematics, relies on breakthrough work of Andrew Wiles in the nineties, although the full
proof needed extra work of Taylor–Wiles and Breuil–Conrad–Diamond–Taylor.

Theorem 6.4. Let 𝐸/ℚ be an elliptic curve. Then 𝐸 is modular.

Thanks to the above theorem, the L-function of 𝐸 extends to an entire function, which satisfies
a functional equation relating 𝐿(𝐸, 𝑠) with 𝐿(𝐸, 2−𝑠). In fact, there is no known proof of these
two facts that does not need modularity of 𝐸. Finally, the Birch–Swinnerton-Dyer conjecture
is a prediction about the behavior of 𝐿(𝐸, 𝑠) near 𝑠 = 1. Recall that the set of points 𝐸(ℚ) of
𝐸 which have coordinates in the rational numbers has a structure of a finitely-generated group
(this is the Mordell–Weil theorem).

Conjecture 6.1. Let 𝐸 be an elliptic curve defined over ℚ. Let 𝐿(𝐸, 𝑠) be its L-function.
Then

ord𝑠=1 𝐿(𝐸, 𝑠) = rankℤ 𝐸(ℚ).

This conjectures is one of the ten “Millennium” problems proposed in 2000 by the Clay
Mathematics Institute, and it is worth 1M$. Very little is known of it. For instance, one does
not yet know how to show the particular case

𝐿(𝐸, 1) = 0
?

⟹ 𝐸(ℚ) infinite.

However, thanks to work of B.Gross, D.Zagier and V.Kolyvagin, one has the following result.
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Theorem 6.5. Let 𝐸/ℚ be a modular elliptic curve.

1. Suppose that 𝐿(𝐸, 1) ≠ 0. Then 𝐸(ℚ) is finite.

2. Suppose that 𝐿(𝐸, 1) = 0 and 𝐿′(𝐸, 1) ≠ 0. Then 𝐸(ℚ) has rank one.

That is, BSD holds if we assume a priori that ord𝑠=1 𝐿(𝐸, 𝑠) is at most one.

The proof of this is also very difficult and uses crucially the modular form 𝑓𝐸 attached to 𝐸 by
modularity. This is nowadays no restriction, since by the modularity theorem we know that all
elliptic curves over ℚ are modular. However, the result of Gross–Zagier and Kolyvagin was
proven in the eighties, before modularity was proven (or even thought to be attainable). A
crucial ingredient that goes in the proof is to be able to produce, in the case of 𝐿(𝐸, 1) = 0, a
point 𝑃 ∈ 𝐸(ℚ) which has infinite order, as predicted by BSD. It is an open problem to find
a point of infinite order in 𝐸(ℚ) knowing that ord𝑠=1 𝐿(𝐸, 𝑠) ≥ 2. This is an example of the
recurring phenomenon in mathematics: it is easy to construct objects that are uniquely defined,
in what could be thought of as a perverse manifestation of the “axiom of choice”.
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7 Modular symbols

7.1 First definitions

Let 𝐴 be an abelian group.

Definition 7.1. An 𝐴-valued is a function

𝑚∶ ℙ1(ℚ) × ℙ1(ℚ) ⟶ 𝐴, (𝑟, 𝑠) ↦ 𝑚{𝑟 ⟶ 𝑠}

satisfying, for all 𝑟, 𝑠 and 𝑡 in ℙ1(ℚ),

1. 𝑚{𝑟 ⟶ 𝑠} = −𝑚{𝑠 ⟶ 𝑟},

2. 𝑚{𝑟 ⟶ 𝑠} + 𝑚{𝑠 ⟶ 𝑡} = 𝑚{𝑟 ⟶ 𝑡}.

Denote by ℳ(𝐴) the abelian group of all 𝐴-valued modular symbols. We will also write
ℳ = ℳ(ℂ).

The group GL2(ℚ) acts on ℳ(𝐴) on the left, by the rule

(𝛾𝑚){𝑟 ⟶ 𝑠} = 𝑚{𝛾−1𝑟 ⟶ 𝛾−1𝑠}.

We are interested in modular symbols invariant under a congruence subgroup Γ ⊂ 𝑆𝐿2(ℤ) and,
to simplify the exposition, we will concentrate on Γ = Γ0(𝑁). The most important examples of
modular symbols will arise from integrating modular forms. Let 𝑓 ∈ 𝑆2(Γ0(𝑁)) be a newform,
and define

𝜆𝑓{𝑟 ⟶ 𝑠} = ∫
𝑠

𝑟
2𝜋𝑖𝑓(𝑧)𝑑𝑧.

Note that since 𝑓 is a cusp form the above integrals converge. Moreover, they can be explicitly
computed: choose some 𝜏 ∈ ℍ and write

∫
𝑠

𝑟
2𝜋𝑖𝑓(𝑧)𝑑𝑧 = ∫

𝜏

𝑟
2𝜋𝑖𝑓(𝑧)𝑑𝑧 + ∫

𝑠

𝜏
2𝜋𝑖𝑓(𝑧)𝑑𝑧.

If 𝑟 = ∞ then the integral from 𝑥 to 𝜏 can be calculated with the formula

∫
𝜏

∞
2𝜋𝑖𝑓(𝑧)𝑑𝑧 =

∞
∑
𝑛=1

𝑎𝑛
𝑛

𝑒2𝜋𝑖𝑛𝜏.
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Otherwise, choose a matrix 𝛾 ∈ SL2(ℤ) with 𝛾∞ = 𝑟 and reduce to the case above, using the
change of variables

∫
𝜏

𝑟
2𝜋𝑖𝑓(𝑧)𝑑𝑧 = ∫

𝛾−1𝜏

∞
2𝜋𝑖𝑓(𝛾𝑧)𝑑(𝛾𝑧) = ∫

𝛾−1𝜏

∞
2𝜋𝑖(𝑓|2𝛾)(𝑧)𝑑𝑧.

A priori the modular symbol 𝜆𝑓 belongs to ℳ(ℂ), although a deep theorem of Shimura gives a
much more precise description of its values. Define the plus-minus symbols

𝜆±
𝑓 {𝑟 ⟶ 𝑠} = 2𝜋𝑖 (∫

𝑠

𝑟
𝑓(𝑧)𝑑𝑧 ± ∫

−𝑠

−𝑟
𝑓(𝑧)𝑑𝑧) .

Theorem 7.1. Let 𝑓 ∈ 𝑆2(Γ0(𝑁)) be a newform such that

𝑓(𝑞) =
∞

∑
𝑛=1

𝑎𝑛𝑞𝑛, 𝑎1 = 1, 𝑎𝑛 ∈ ℤ.

There exists Ω+
𝑓 ∈ ℝ and Ω−

𝑓 ∈ 𝑖ℝ such that

𝜆±
𝑓 {𝑟 ⟶ 𝑠} ∈ Ω±

𝑓 ℤ.

Therefore 1
Ω±

𝑓
𝜆±

𝑓 ∈ ℳ(ℤ).

A crucial property of 𝜆𝑓 and thus of 𝜆±
𝑓 is their invariance with respect to Γ0(𝑁):

Proposition 7.1. We have, for all 𝛾 ∈ Γ0(𝑁),

𝜆𝑓{𝛾𝑟 ⟶ 𝛾𝑠} = 𝜆𝑓{𝑟 ⟶ 𝑠}.

Proof. Write 𝜔𝑓 = 2𝜋𝑖𝑓(𝑧)𝑑𝑧, and note that:

𝜆𝑓{𝛾𝑟 ⟶ 𝛾𝑠} = ∫
𝛾𝑠

𝛾𝑟
𝜔𝑓 = ∫

𝑠

𝑟
𝜔𝑓|2𝛾 = ∫

𝑠

𝑟
𝜔𝑓 = 𝜆𝑓{𝑟 ⟶ 𝑠}.

In the next section we will study the space of Γ0(𝑁)-invariant modular symbols in more
detail.
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7.2 The Eichler–Shimura isomorphism

Write ℳΓ0(𝑁) for the space of Γ0(𝑁)-invariant modular symbols. It is equipped with an action
of the Hecke operators 𝑇𝑝 with 𝑝 ∤ 𝑁, via the formula

(𝑇𝑝𝑚){𝑟 ⟶ 𝑠} = 𝑚{𝑝𝑟 ⟶ 𝑝𝑠} +
𝑝−1

∑
𝑗=0

𝑚 {𝑟 + 𝑗
𝑝

⟶ 𝑠 + 𝑗
𝑝

} .

Proposition 7.2. The map 𝑓 ↦ 𝜆𝑓 is an injective, ℂ-linear Hecke-equivariant map.

Proof. Assuming that 𝜆𝑓 = 0, define the following holomorphic function on ℍ ∪ ℙ1(ℚ):

𝐹(𝜏) = ∫
𝜏

∞
2𝜋𝑖𝑓(𝑧)𝑑𝑧.

Note that 𝐹(𝛾𝜏) − 𝐹(𝜏) = 𝜆𝑓{𝑟 ⟶ 𝛾𝑟} for any choice of 𝑟 ∈ ℙ1(ℚ). Since by assumption
𝜆𝑓{𝑟 ⟶ 𝛾𝑟} is zero, we get that 𝐹 is Γ0(𝑁)-invariant. Therefore 𝐹 is bounded on ℍ, and hence
is constant by Liouville’s theorem. Therefore 𝐹 ′(𝜏) = 0. But note that by the fundamental
theorem of Calculus 𝐹 ′(𝜏) = 2𝜋𝑖𝑓(𝜏). Hence 𝑓 = 0.

In order to investigate the image of 𝑓 ↦ 𝜆𝑓, we first need to know the dimension of ℳΓ0(𝑁).
Let 𝑔 = dim 𝑆2(Γ0(𝑁)) and let 𝑠 be the number of cusps of Γ0(𝑁).

Theorem 7.2. The space ℳΓ0(𝑁) has dimension 2𝑔 + 𝑠 − 1.

Therefore the map 𝑓 ↦ 𝜆𝑓 cannot be surjective, and in fact it will fail to be surjective in two
ways. First, complex conjugation gives a natural action on ℳΓ0(𝑁), by

𝑚{𝑟 ⟶ 𝑠} = 𝑚{𝑟 ⟶ 𝑠}.

However 𝜆𝑓 is the modular symbol attached to 2𝜋𝑖𝑓(𝑧)𝑑𝑧 = −2𝜋𝑖 ̄𝑓(𝑧)𝑑 ̄𝑧, which we didn’t
consider. Therefore we get a new homomorphism

𝜆∶ 𝑆2(Γ0(𝑁)) ⊕ 𝑆2(Γ0(𝑁)) ⟶ ℳΓ0(𝑁),

which is still injective and its image has thus dimension 2𝑔 inside the 2𝑔 + 𝑠 − 1-dimensional
space ℳΓ0(𝑁).

Secondly, we need to consider the so-called .

Definition 7.2. A Γ0(𝑁)-invariant modular symbol 𝑚 is called Eisenstein if there exists a
Γ0(𝑁)-invariant function 𝑀∶ ℙ1(ℚ) ⟶ ℂ such that

𝑚{𝑟 ⟶ 𝑠} = 𝑀(𝑠) − 𝑀(𝑟), 𝑟, 𝑠 ∈ ℙ1(ℚ).
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The space of Eisenstein modular symbols has dimension 𝑠 − 1 and is linearly disjoint from the
image of 𝜆 above. This gives a complete description of ℳΓ0(𝑁).

Theorem 7.3. The map 𝜆 gives a Hecke-equivariant isomorphism

𝑀2(Γ0(𝑁)) ⊕ 𝑆2(Γ0(𝑁)) ⟶ ℳΓ0(𝑁).

7.3 Computation of modular symbols

One important feature of modular symbols is that they are computable. That is, we can
calculate the space ℳΓ0(𝑁) without using the Eichler–Shimura isomorphism and thus avoiding
the computation of path integrals. The key to making this possible consists in noticing that a
modular symbol 𝑚 is determined by “a few” of its values 𝑚{𝑟 ⟶ 𝑠}.

Definition 7.3. Two elements 𝑎/𝑏 and 𝑐/𝑑 in ℙ1(ℚ) are if 𝑎𝑑 − 𝑏𝑐 = ±1. Here, we use the
convention that these fractions are in reduced terms, and ∞ = 1/0.

The following lemma is crucial in the algorithms for computing with modular symbols.

Lemma 7.1. Any two elements 𝑎/𝑏 and 𝑐/𝑑 in ℙ1(ℚ) can be joined by a succession of paths
between adjacent cusps.

Proof. It is enough to see how to join 𝑎/𝑏 to ∞. We will find 𝑡/𝑎′ ∈ ℙ1(ℚ) such that:

{𝑎/𝑏 ⟶ ∞} = {𝑎/𝑏 ⟶ 𝑡/𝑎′} + {𝑡/𝑎′ ⟶ ∞}.

Choose 𝑎′ satisfying
𝑎′𝑎 ≡ 1 (mod 𝑏), |𝑎′| ≤ 𝑏/2.

Next, choose 𝑡 such that
𝑎𝑎′ − 𝑏𝑡 = 1.

Then {𝑎/𝑏 ⟶ 𝑡/𝑎′} is a path joining adjacent cusps, and we reduced to a problem of smaller
size, since |𝑎′| ≤ 𝑏/2. One can see how to adapt the Euclidean algorithm that computes the
greatest common divisor of 𝑎 and 𝑏 to perform the above calculation.

Example 7.1. Consider 𝑎/𝑏 = 2/3 and 𝑐/𝑑 = 1/0 = ∞. Then these are not adjacent, but note
that 2/3 is adjacent to 1/2, that 1/2 is adjacent to 1/1, and 1/1 is adjacent to 1/0. Therefore
we have have joined the cusps 2/3 and ∞ with a chain of adjacent cusps.

2/3 ∼ 1/2 ∼ 1/0 ∼ 1/0
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Using the first defining property of modular symbols, the above proposition says that a modular
symbol is determined by the values 𝑚{𝑟 ⟶ 𝑠} where 𝑟 and 𝑠 are adjacent. That is, a modular
symbol is completely determined by its values on

Γ0(𝑁)\ {(𝑎
𝑏

, 𝑐
𝑑

) | 𝑎𝑑 − 𝑏𝑐 = 1} .

To study this set, define the projective line over ℤ/𝑁ℤ as

ℙ1(ℤ/𝑁ℤ) = {(𝑥 ∶ 𝑦) ∈ (ℤ/𝑁ℤ)2 | gcd(𝑥, 𝑦, 𝑁) = 1}/ ∼,

where (𝑥 ∶ 𝑦) ∼ (𝑥′ ∶ 𝑦′) if and only if there is 𝑢 ∈ (ℤ/𝑁ℤ)× such that 𝑥′ = 𝑢𝑥 and 𝑦′ = 𝑢𝑦.

Lemma 7.2. The set Γ0(𝑁)\ {(𝑎
𝑏 , 𝑐

𝑑) | 𝑎𝑑 − 𝑏𝑐 = 1} is in natural bijection with ℙ1(ℤ/𝑁ℤ).

Proof. First, note that the set {(𝑎
𝑏 , 𝑐

𝑑) | 𝑎𝑑 − 𝑏𝑐 = 1} is in bijection with SL2(ℤ) via
(𝑎/𝑏, 𝑐/𝑑) ↦ ( 𝑎 𝑐

𝑏 𝑑 ). So to conclude the proof we need to show that the map ( 𝑎 𝑏
𝑐 𝑑 ) ↦ (𝑐∶ 𝑑)

induces a bijection
Γ0(𝑁)\SL2(ℤ) ⟶ ℙ1(ℤ/𝑁ℤ).

To see this, note that the map is surjective, since given (𝑐 ∶ 𝑑) ∈ ℙ1(ℤ/𝑁ℤ) we can find a matrix
in SL2(ℤ/𝑁ℤ) whose second row is (𝑐, 𝑑). Using that SL2(ℤ) ⟶ SL2(ℤ/𝑁ℤ) is surjective we
can lift this matrix to SL2(ℤ). Secondly, if two matrices in SL2(ℤ) map to the same element in
ℙ1(ℤ/𝑁ℤ) then modulo 𝑁 these matrices are of the form

𝛾1 ≡ (𝑎 𝑏
𝑐 𝑑) (mod 𝑁), 𝛾2 ≡ (𝑎𝑢−1 𝑏𝑢−1

𝑐𝑢 𝑑𝑢 ) (mod 𝑁).

Then note that the product 𝛾1𝛾−1
2 is 𝛾1𝛾−1

2 ≡ ( 1 0
0 1 ) (mod 𝑁), and hence the matrices in

SL2(ℤ) are in the same coset for Γ0(𝑁).

Therefore a modular symbol 𝑚 is determined by the function

[⋅]𝑚 ∶ ℙ1(ℤ/𝑁ℤ) ⟶ ℂ, [𝑏 ∶ 𝑑]𝑚 = 𝑚{𝑎/𝑏 ⟶ 𝑐/𝑑}, 𝑎𝑑 − 𝑏𝑐 = 1.

In particular, the dimension of ℳΓ0(𝑁) is finite, bounded by #ℙ1(ℤ/𝑁ℤ).

Note, however, that not all functions ℙ1(ℤ/𝑁ℤ) ⟶ ℂ represent a modular symbol. In fact,
for such a function to be a modular symbol it has to satisfy some linear relations coming from
the two axioms defining modular symbols.

Proposition 7.3. A function 𝜑∶ ℙ1(ℤ/𝑁ℤ) ⟶ ℂ satisfies 𝜑 = [⋅]𝑚 for some modular symbol
𝑚 ∈ ℳΓ0(𝑁) if and only if

1. 𝜑(𝑥) = −𝜑(−1
𝑥 ), for all 𝑥 ∈ ℙ1(ℤ/𝑁ℤ).

2. 𝜑(𝑥) = 𝜑( 𝑥
𝑥+1) + 𝜑(𝑥 + 1), for all 𝑥 ∈ ℙ1(ℤ/𝑁ℤ).

97



Proof. Suppose that 𝜑 = [⋅]𝑚 for some modular symbol 𝑚 ∈ ℳΓ0(𝑁), and let 𝑥 = [𝑏 ∶ 𝑑] ∈
ℙ1(ℤ/𝑁ℤ). Then

𝜑(𝑥) = 𝜑(𝑏∶ 𝑑) = [𝑏 ∶ 𝑑]𝑚 = 𝑚 {𝑎
𝑏

⟶ 𝑐
𝑑

}

= −𝑚 { −𝑐
−𝑑

⟶ 𝑎
𝑏

} = −[−𝑑∶ 𝑏]𝑚 = −𝜑(−1/𝑥).

Similarly, we compute

𝜑(𝑥) = 𝜑(𝑏∶ 𝑑) = [𝑏 ∶ 𝑑]𝑚 = 𝑚 {𝑎
𝑏

⟶ 𝑐
𝑑

} = 𝑚 {𝑎
𝑏

⟶ 𝑎 + 𝑐
𝑏 + 𝑑

} + 𝑚 {𝑎 + 𝑐
𝑏 + 𝑑

⟶ 𝑐
𝑑

}

= [𝑏∶ 𝑏 + 𝑑]𝑚 + [𝑏 + 𝑑∶ 𝑑]𝑚 = 𝜑 ( 𝑥
𝑥 + 1

) + 𝜑(𝑥 + 1).

The above proposition allows for an algorithm that computes the space ℳΓ0(𝑁), by solving
the linear system of equations for 𝜑. Moreover, the Hecke action is also computable on this
resulting representation. The details of this were worked out for the first time in [2].

7.4 A worked out example

We compute the space of modular symbols for Γ0(11). First we enumerate the elements of
ℙ1(ℤ/11ℤ):

ℙ1(ℤ/11ℤ) = {∞, 0, 1, … , 10}.

Using the two-term relations of Proposition 7.3 we find that if 𝜑 ∈ 𝕄(Γ0(11)) then:

𝜑(∞) = −𝜑(−1/∞) = −𝜑(0).

Similarly, we find:

𝜑(1) = −𝜑(10)
𝜑(2) = −𝜑(5)
𝜑(3) = −𝜑(7)
𝜑(4) = −𝜑(8)
𝜑(6) = −𝜑(9).

Therefore an M-symbol 𝜑 is determined by its values on 0, 1, 2, 3, 4, 6. Now we find the 3-term
relations:

98



𝑥 ∞ 0 1 2 3 4 5 6 7 8 9 10

𝑥 + 1 ∞ 1 2 3 4 5 6 7 8 9 10 0
𝑥

𝑥+1 1 0 6 8 9 3 10 4 5 7 2 ∞

The table above is to be read as follows. For example, the first column says 𝜑(∞) = 𝜑(∞)+𝜑(1).
The last column implies, in turn, 𝜑(10) = 𝜑(0) + 𝜑(∞). We see from the first column that
𝜑(1) = 0 (and thus 𝜑(10) = 0). Column 3 gives then that 𝜑(6) = −𝜑(2), and Column 4 gives
𝜑(4) = 𝜑(3) − 𝜑(2). All the other columns are redundant, and so any modular symbol 𝜑
is (freely) determined by its values on 0, 2 and 3. We can write down a basis {𝑓, 𝑔, ℎ} for
𝕄(Γ0(11))

∞ 0 1 2 3 4 5 6 7 8 9 10

f -1 1 0 0 0 0 0 0 0 0 0 0
g 0 0 0 1 0 -1 -1 -1 0 1 1 0
h 0 0 0 0 1 1 0 0 -1 -1 0 0

Next we calculate 𝑇2 acting on the basis {𝑓, 𝑔, ℎ}. Since we have only given the definition of
𝑇𝑝 on modular symbols, we will need to relate the M-symbols {𝑓, 𝑔, ℎ} to their corresponding
modular symbols. We will abuse notation and use the same notation for those. Each element
of ℙ1(ℤ/𝑁ℤ) can be lifted to a matrix in SL2(ℤ). In fact, we can write the following table:

𝑥 = (𝑐∶ 𝑑) ∈ ℙ1(ℤ/𝑁ℤ) ( 𝑎 𝑏
𝑐 𝑑 ) ∈ SL2(ℤ) 𝑎

𝑐 ⟶ 𝑏
𝑑

0 ( 1 0
0 1 ) ∞ ⟶ 0

2 ( −1 −1
2 1 ) −1/2 ⟶ −1

3 ( −2 −1
3 1 ) −2/3 ⟶ −1

Let us write 𝑇2𝑓 = 𝑎𝑓 + 𝑏𝑔 + 𝑐ℎ, with 𝑎, 𝑏, 𝑐 to be determined. Note that 𝑎 = (𝑇2𝑓)(0), and
thus we compute:

[0]𝑇2(𝑚) = (𝑇2𝑚){∞ ⟶ 0}

= 𝑚{2
0

⟶ 0
1

} + 𝑚{∞ + 0
2

⟶ 0 + 0
2

} + 𝑚{∞ + 1
2

⟶ 0 + 1
2

}

= 𝑚{∞ ⟶ 0} + 𝑚{∞ ⟶ 0} + 𝑚{∞ ⟶ 1
2

}

= 2𝑚{∞ ⟶ 0} + 𝑚{∞ ⟶ 1} + 𝑚{1 ⟶ 1
2

}

= 2[0]𝑚 + [(0∶ 1)]𝑚 + [1∶ 2]𝑚
= 3[0]𝑚 + [1/2]𝑚 = 3[0]𝑚 + [6]𝑚.
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Analogous computations give

[2]𝑇2(𝑚) = [1]𝑚 + [4]𝑚 + [5]𝑚 + [7]𝑚, [3]𝑇2(𝑚) = [1]𝑚 + [6]𝑚 + [7]𝑚 + [8]𝑚

Note that we could express the resulting values in other ways using the relations for M-symbols,
so the above equations are not unique. In any way, this allows us to find that

𝑇2𝑓 = 3𝑓, 𝑇2𝑔 = −𝑓 − 2𝑔, 𝑇2ℎ = −2ℎ.

We find then that the matrix of 𝑇2 in the basis {𝑓, 𝑔, ℎ} is

[𝑇2] = ⎛⎜
⎝

3 −1 0
0 −2 0
0 0 −2

⎞⎟
⎠

,

whose eigenvalues are 3 and −2 (the eigenvalue −2 with multiplicity 2). Since we have a
decomposition ℳ(Γ0(11)) ≅ ℰ ⊕ 𝑆2(Γ0(11)) ⊕ 𝑆2(Γ0(11)), we deduce that dim 𝑆2(Γ0(11)) = 1
(and also dim ℰ = 1). Moreover, if 𝐹 ∈ 𝑆2(Γ0(11)) is any nonzero cusp form, then we know
that 𝑇2𝐹 = −2𝐹, so 𝑎2(𝐹) = −2.

Similar computations would give us the Hecke eigenvalues for all 𝑇𝑝 operators (with 𝑝 ≠ 11).
By the Eichler–Shimura construction, these numbers are telling us the number of points of a
certain elliptic curve. In fact, let 𝐸 be the elliptic curve of conductor 11 given by the equation

𝐸/ℚ ∶ 𝑦2 + 𝑦 = 𝑥3 − 𝑥2 − 10𝑥 − 20.

When reduced modulo 2, we get 𝐸:

𝐸𝔽2
∶ 𝑦2 + 𝑦 = 𝑥3 + 𝑥2.

Note that
#𝐸(𝔽2) = #{∞, (0, 0), (0, 1), (1, 0), (1, 1)} = 5,

which matches with the prediction from the modular symbols computation: we expected
𝑝 + 1 − #𝐸(𝔽𝑝) = 𝑎𝑝 and, in fact: 2 + 1 − 5 = −2.
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