Overconvergent module of distributions¶
Initialize self. See help(type(self)) for accurate signature.
- class darmonpoints.ocmodule.AddMeromorphicFunctions(K, twisting_matrix=None)[source]¶
Bases:
Parent
,CachedRepresentation
TESTS:
sage: from darmonpoints.ocmodule import AddMeromorphicFunctions sage: from darmonpoints.homology import Divisors sage: from darmonpoints.sarithgroup import BigArithGroup sage: padic_printing.mode(‘val-unit’) sage: K.<a> = Qq(7^2,5) sage: G = BigArithGroup(7,1,1,use_shapiro=False, outfile=’/dev/null’) sage: M = AddMeromorphicFunctions(K) sage: Div = Divisors(K) sage: D = Div(a/7) - Div((a+1)/7) sage: f = M(D) sage: f.power_series() 7 * (1205 + 401*a) + O(7^5) + (7^2 * (59 + 229*a) + O(7^5))*t + (7^3 * (23 + 13*a) + O(7^5))*t^2 + (7^4 * (6 + 2*a) + O(7^5))*t^3 + O(7^5)*t^4 sage: E = Div((a+3)) - Div((a+2)) sage: f(E).log(0) == D.pair_with(E) True sage: g = G.Gpn.gen(1).quaternion_rep sage: M(g * D)(E) == (g * f)(E) True sage: M = AddMeromorphicFunctions(K, twisting_matrix = G.wp()) sage: Div = Divisors(K) sage: D = Div(a) - Div((a+1)) sage: f = M(D) sage: f.power_series() 7 * 2400 + O(7^5) + (7^2 * (1 + 2*a) + O(7^5))*t + (7^3 * (8 + 15*a) + O(7^5))*t^2 + (7^4 * (6 + 2*a) + O(7^5))*t^3 + O(7^5)*t^4 sage: E = Div((a+3)/7) - Div((a+2)/7) sage: f(E).log(0) == D.pair_with(E) True sage: g = G.Gpn.gen(1).quaternion_rep sage: A = M(g * D)(E) sage: B = (g * f)(E) sage: A == B True
- Element¶
alias of
AddMeromorphicFunctionsElement
- class darmonpoints.ocmodule.AddMeromorphicFunctionsElement(parent, data, check=True)[source]¶
Bases:
ModuleElement
- class darmonpoints.ocmodule.OCVn(p, depth)[source]¶
Bases:
Module
,UniqueRepresentation
- Element¶
This class represents objects in the overconvergent approximation modules used to describe overconvergent p-adic automorphic forms.
INPUT:
n
- integerR
- ringdepth
- integer (Default: None)basis
- (Default: None)
AUTHORS:
Cameron Franc (2012-02-20)
Marc Masdeu (2012-02-20)
alias of
OCVnElement
- class darmonpoints.ocmodule.OCVnElement(parent, val=0, check=True, normalize=False)[source]¶
Bases:
ModuleElement
This class represents elements in an overconvergent coefficient module.
INPUT:
parent
- An overconvergent coefficient module.val
- The value that it needs to store (default: 0). It can be another OCVnElement, in which case the values are copied. It can also be a column vector (or something coercible to a column vector) which represents the values of the element applied to the polynomials 1, x, x^2, … ,`x^n`.check
- boolean (default: True). If set to False, no checks are done andval
is assumed to be the a column vector.
AUTHORS:
Cameron Franc (2012-02-20)
Marc Masdeu (2012-02-20)
Representations¶
Initialize self. See help(type(self)) for accurate signature.
- class darmonpoints.representations.CoIndElement(parent, data, check=True)[source]¶
Bases:
ModuleElement
Elements in a co-induced module are represented by lists [v_1,ldots v_r] indexed by the cosets of G(p) G(1).
- class darmonpoints.representations.CoIndModule(G, V)[source]¶
Bases:
Parent
A co-induced module.
TESTS:
sage: from darmonpoints.homology import * sage: from darmonpoints.cohomology_abstract import * sage: from darmonpoints.sarithgroup import * sage: G = BigArithGroup(5,6,1,outfile='/tmp/darmonpoints.tmp') # optional - magma
- Element¶
alias of
CoIndElement
- acting_matrix(g, prec=None)[source]¶
EXAMPLES:
sage: class Foo: ....: def __init__(self, x): ....: self._x = x ....: @cached_method ....: def f(self,*args): ....: return self._x^2 sage: a = Foo(2) sage: a.f.cache {} sage: a.f() 4 sage: a.f.cache {((), ()): 4}
- gen(i)[source]¶
EXAMPLES:
sage: class Foo: ....: def __init__(self, x): ....: self._x = x ....: @cached_method ....: def f(self,*args): ....: return self._x^2 sage: a = Foo(2) sage: a.f.cache {} sage: a.f() 4 sage: a.f.cache {((), ()): 4}
- gens()[source]¶
EXAMPLES:
sage: class Foo: ....: def __init__(self, x): ....: self._x = x ....: @cached_method ....: def f(self): ....: return self._x^2 sage: a = Foo(2) sage: print(a.f.cache) None sage: a.f() 4 sage: a.f.cache 4
- class darmonpoints.representations.IndAction(algebra, V, G)[source]¶
Bases:
CoIndAction
- class darmonpoints.representations.IndElement(parent, data, check=True)[source]¶
Bases:
CoIndElement
- class darmonpoints.representations.IndModule(G, V)[source]¶
Bases:
CoIndModule
- Element¶
alias of
IndElement
Meromorphic functions¶
Initialize self. See help(type(self)) for accurate signature.
- class darmonpoints.meromorphic.MeromorphicFunctions(K, p, prec)[source]¶
Bases:
Parent
,UniqueRepresentation
TESTS:
- Element¶
alias of
MeromorphicFunctionsElement