Integrals¶
Initialize self. See help(type(self)) for accurate signature.
- darmonpoints.integrals.integrate_H1(G, cycle, cocycle, depth=1, prec=None, twist=False, progress_bar=False, multiplicative=True, return_valuation=True)[source]¶
- darmonpoints.integrals.integrate_H1_riemann(G, cycle, cocycle, depth, prec=None, twist=False, progress_bar=False)[source]¶
- darmonpoints.integrals.log_pseries(R, x, prec=None)[source]¶
- Calculate efficiently log(1 - x*z), where z is the variable of R Doing it with power series built-in log is about 10 times slower… 
Limits¶
Initialize self. See help(type(self)) for accurate signature.
- darmonpoints.limits.compute_tau0(v0, gamma, wD, return_exact=False)[source]¶
- INPUT: - v0: F -> its localization at p 
- gamma: the image of wD (the generator for an order of F) under an optimal embedding 
 - OUTPUT: - The element tau_0 such that gamma * [tau_0,1] = wD * [tau_0,1] 
- darmonpoints.limits.find_optimal_embeddings(F, use_magma=False, extra_conductor=1, magma=None)[source]¶
- darmonpoints.limits.find_tau0_and_gtau(v0, M, W, orientation=None, extra_conductor=1, algorithm='guitart_masdeu')[source]¶
- darmonpoints.limits.order_and_unit(F, conductor)[source]¶
- Returns an order in F and a fundamental unit in the order. It ensures that u satisfies (recall that F is real quadratic) that u belongs to the order ZZ + ZZ[delta], where delta is either sqrt{D}/2 (if D = 0 pmod 4), or (1+sqrt{D})/2. Here D is the discriminant of the order.