5  Eisenstein series

The conclusion of the previous chapter has been that \(S_k(\Gamma_1(N))\) has a basis of eigenforms each of them new at some level dividing \(N\). For a general congruence subgroup \(\Gamma\), recall that the Petersson inner product allowed us to define an “orthogonal complement” to \(S_k(\Gamma)\), the Eisenstein subspace \[{\mathcal{E}}_k(\Gamma)=\{f\in M_k(\Gamma) ~|~ \langle f,g\rangle_\Gamma=0\quad \forall g\in S_k(\Gamma)\}.\] The goal for this chapter is to find a natural basis for \({\mathcal{E}}_k(\Gamma)\).

5.1 Eisenstein series for congruence subgroups

Recall the Eisenstein series for \({\operatorname{SL}}_2({\mathbb{Z}})\) that we saw at the beginning: \[G_k(z)=\mathop{\sum{\raise 3pt\hbox{${}'$}}}_{(m,n)\in{\mathbb{Z}}^2} \frac{1}{(mz+n)^k}.\] In order to generalize this construction, we need to put it in a more intrinsic form. Recall that the stabilizer of the cusp \(\infty\) is \[P_\infty = {\operatorname{SL}}_2({\mathbb{Z}})_\infty = \{\pm \left(\begin{smallmatrix}1&b\\0&1\end{smallmatrix}\right) ~|~ b\in{\mathbb{Z}}\}.\] Write also \(P_\infty^+=\{\left(\begin{smallmatrix}1&b\\0&1\end{smallmatrix}\right) ~|~ b\in{\mathbb{Z}}\}\).

Lemma 5.1 The map \(\left(\begin{smallmatrix}a&b\\c&d\end{smallmatrix}\right)\mapsto (c,d)\) induces a bijection \[P_\infty^+\backslash {\operatorname{SL}}_2({\mathbb{Z}})\stackrel{\sim}{\longrightarrow} \{(c,d)\in{\mathbb{Z}}^2~|~\gcd(c,d)=1\}.\]

Proof. Surjectivity of the map follows from Bézout: given \((c,d)\) with \(\gcd(c,d)=1\) we can find \(a,b\in{\mathbb{Z}}\) such that \(ad-bc = 1\). Moreover, any solution to the equation \(xd-yc = 1\) is of the form \[x = a+tc, y = b+td,\quad t\in {\mathbb{Z}}.\] That is, the preimage of \((c,d)\) consists of the set of matrices of the form \[\left(\begin{matrix}a+tc&b+td\\c&d\end{matrix}\right) = \left(\begin{matrix}1&t\\0&1\end{matrix}\right)\left(\begin{matrix}a&b\\c&d\end{matrix}\right),\quad t\in{\mathbb{Z}}.\]

This lemma allows us to rewrite \(G_k(z)\) in a different way.

Proposition 5.1 We have \[G_k(z)=\zeta(k)\sum_{\gamma\in P_\infty^+\backslash {\operatorname{SL}}_2({\mathbb{Z}})} j(\gamma,z)^{-k}.\]

Proof. Write a pair \((m,n)\in{\mathbb{Z}}^2\smallsetminus \{(0,0)\}\) as \((gc,gd)\), with \(g=\gcd(m,n)\) and \((c,d)\) coprime. Therefore \[\begin{align*} G_k(z)&=\sum_{g=1}^\infty \sum_{\substack{(c,d)\in{\mathbb{Z}}^2\\\gcd(c,d)=1}} \frac{1}{g^k(cz+d)^k}\\ &=\sum_{g=1}^\infty \frac{1}{g^k} \sum_{\substack{(c,d)\in{\mathbb{Z}}^2\\\gcd(c,d)=1}} \frac{1}{(cz+d)^k}=\zeta(k) \sum_{\gamma\in P_\infty^+\backslash{\operatorname{SL}}_2({\mathbb{Z}})} j(\gamma,z)^{-k}. \end{align*}\]

Let now \(\Gamma\) be an arbitrary congruence subgroup, and define \(\Gamma_\infty=\Gamma\cap P_\infty\) and \(\Gamma_\infty^+=\Gamma\cap P_\infty^+\).

Definition 5.1 The of weight \(k\) attached to \(\Gamma\) and to the cusp \(\infty\) is \[G_{k,\Gamma,\infty}(z)=\sum_{\gamma\in \Gamma^+_\infty\backslash\Gamma} j(\gamma,z)^{-k}.\]

Since \(j(h\gamma,z)=j(\gamma,z)\) whenever \(h\in \Gamma_\infty^+\), the terms in the above sum are well-defined. Moreover, since \(\Gamma_\infty^+\backslash\Gamma\) injects in \(P_\infty^+\backslash{\operatorname{SL}}_2({\mathbb{Z}})\), the series above is a sub-series of \(G_k(z)\) and therefore it converges. So in particular, \(G_{k,\Gamma,\infty}\) is holomorphic on \({\mathbb{H}}\).

Proposition 5.2 If either

  1. \(k\) is even, or

  2. \(k\) is odd, \(-I\not\in\Gamma\) and \(\infty\) is a regular cusp of \(\Gamma\)

then \(G_{k,\Gamma,\infty}\) belongs to \(M_k(\Gamma)\). Moreover, \(G_{k,\Gamma,\infty}(\infty)\neq 0\) and \(G_{k,\Gamma,\infty}\) vanishes at all cusps \(s\neq \infty\).

If \(k\) is odd and either \(-I\in\Gamma\) or \(\infty\) is an irregular cusp of \(\Gamma\), then \(G_{k,\Gamma,\infty}=0\).

Proof. It is easy to show that \(G_{k,\Gamma,\infty}=0\) if the conditions stated in the proposition are satisfied. The computation showing that \(G_{k,\Gamma,\infty}\) is weakly-modular of weight \(k\) for \(\Gamma\) is also straightforward, using the cocycle condition of \(j(\gamma,z)\).

Next we compute the value \(G_{k,\Gamma,\infty}(\infty)\). We need to understand how \(j(\gamma,z)^{-k}\) behaves when \(\Im z\longrightarrow\infty\). Suppose that \(\gamma=\left(\begin{smallmatrix}a&b\\c&d\end{smallmatrix}\right)\). Then \[\lim_{\Im z\longrightarrow\infty} j(\gamma,z)^{-k}=\lim_{\Im z\longrightarrow\infty} (cz+d)^{-k} = \begin{cases} d^{-k}&\text{if }c=0,\\ 0&\text{if }c\neq 0. \end{cases}\] Note also that \(c=0\iff \gamma\in\Gamma_\infty\). Therefore we may calculate \[\begin{align*} \lim_{\Im z\longrightarrow\infty} G_{k,\Gamma,\infty}(z)&=\lim_{\Im z\longrightarrow\infty} \sum_{\gamma\in\Gamma_\infty^+\backslash \Gamma} j(\gamma,z)^{-k}\\ &=\sum_{\gamma\in\Gamma_\infty^+\backslash\Gamma_\infty} j(\gamma,z)^{-k}\\ &=\begin{cases} 1&\text{if }\Gamma_\infty^+=\Gamma_\infty,\\ 1+(-1)^k&\text{if }[\Gamma_\infty\colon\Gamma_\infty^+]=2. \end{cases} =\begin{cases} 1&\text{if } \Gamma_\infty^+=\Gamma_\infty,\\ 2&\text{if } [\Gamma_\infty\colon\Gamma_\infty^+]=2\text{ and } k\text{ is even,}\\ 0&\text{if } [\Gamma_\infty\colon\Gamma_\infty^+]=2\text{ and } k\text{ is odd.} \end{cases} \end{align*}\] The last case does not occur, by assumption. Hence \(G_{k,\Gamma,\infty}(\infty)\in \{1,2\}\) is nonzero.

Consider now a cusp \(s\) of \(\Gamma\), different from \(\infty\). Let \(\gamma_s\in {\operatorname{SL}}_2({\mathbb{Z}})\) satisfy \(\gamma_s \infty = s\), so that \(G_{k,\Gamma,\infty}(s) = (G_{k,\Gamma,\infty}|_k\gamma_s)(\infty)\). Note that \[(G_{k,\Gamma,\infty}|_k\gamma_s)(z) = \sum_{\gamma\in\Gamma_\infty^+\backslash\Gamma} j(\gamma,\gamma_s z)^{-k}j(\gamma_s,z)^{-k}=\sum_{\gamma\in\Gamma_\infty^+\backslash\Gamma} j(\gamma\gamma_s,z)^{-k}.\] Since \(\gamma\gamma_s\) has nonzero bottom-left entry (otherwise \(\gamma\gamma_s\) would stabilize infinity, which does not), then each of the terms approaches \(0\) as \(\Im z\longrightarrow\infty\) and we obtain the desired vanishing.

The next goal is to construct Eisenstein series that are non-vanishing at each of the other cusps \(s\) of \(\Gamma\) (and vanish at the cusps \(s'\neq s\)). This is done by translating \(G_{k,\Gamma,\infty}\) by the matrices \(\gamma_s\).

Lemma 5.2 Let \(s\) be a cusp of \(\Gamma\) and let \(\gamma_s\in{\operatorname{SL}}_2({\mathbb{Z}})\) be a matrix such that \(\gamma_s \infty = s\). Define \[G_{k,\Gamma,s} = G_{k,\gamma_s^{-1}\Gamma\gamma_s,\infty}|_k \gamma_s^{-1} = \sum_{\gamma\in\Gamma_s^+\backslash \Gamma} j(\gamma_s^{-1}\gamma,z),\quad\text{where }\Gamma_s^+=\{\gamma\in\Gamma~|~ \gamma_s^{-1}\gamma\gamma_s = \left(\begin{smallmatrix}1&*\\0&1\end{smallmatrix}\right)\}.\] If \(k\) is odd, suppose that \(-I\not\in\Gamma\), and \(s\) is a regular cusp of \(\Gamma\). Then \(G_{k,\Gamma,s}\) belongs to \({\mathcal{E}}_k(\Gamma)\), does not vanish at \(s\) and vanishes at all other cusps \(s'\neq s\) of \(\Gamma\).

Although there is a choice of \(\gamma_s\) involved, the form \(G_{k,\Gamma,s}\) is well defined when \(k\) is even, and well-defined up to sign when \(k\) is odd.

We next show that the Eisenstein series we have just introduced belong in fact to the Eisenstein subspace \({\mathcal{E}}_k(\Gamma\)).

Proposition 5.3 Let \(\Gamma\) be a congruence subgroup, let \(k\geq 3\) be an integer and let \(s\) be a cusp of \(\Gamma\). Then \(G_{k,\Gamma,s}\) belongs to \({\mathcal{E}}_k(\Gamma)\).

Proof. We need to prove that for each \(f\in S_k(\Gamma)\) we have \(\langle f,G_{k,\Gamma,s}\rangle_\Gamma = 0\). From the definition of the Petersson inner product there is an equality \[\langle f,g\rangle_\Gamma = \langle f|_k\gamma,g|_k\gamma\rangle_{\gamma^{-1}\Gamma\gamma}.\] Thus we may reduce to showing \(\langle f,G_{k,\Gamma,\infty}\rangle_\Gamma=0\) for all \(f\in S_k(\Gamma)\). Writing the definition of the pairing and exchanging the sum with the integral gives \[\langle f,G_{k,\Gamma,\infty}\rangle_\Gamma = \sum_{\gamma\in \Gamma_\infty^+\backslash \Gamma} \int_{D_\Gamma} f(z)\overline{j(\gamma,z)^{-k}} \Im(z)^kd\mu(z).\] Make the change of variables \(w=\gamma z\), so \[f(w)=j(\gamma,z)^kf(z),\quad \Im(w)=|j(\gamma,z)|^{-2}\Im(z).\] This gives \[\langle f,G_{k,\Gamma,\infty}\rangle_\Gamma = \sum_{\gamma\in\Gamma_\infty^+\backslash \Gamma}\int_{w\in \gamma D_\Gamma} f(w) y^k\frac{dxdy}{y^2} = \int_{w\in\Gamma_\infty^+\backslash{\mathbb{H}}} f(w)y^{k-2}dxdy.\] Suppose now that \(\infty\) has width \(h\) and that the \(q\)-expansion of \(f\) is \(\sum a_n q_h^n\). Then \[\begin{align*} \langle f,G_{k,\Gamma,\infty}\rangle_\Gamma &= \int_{\Gamma_\infty^+\backslash {\mathbb{H}}}\left(\sum_{n=1}^\infty a_n e^{2\pi i nw/h}\right)y^{k-2}dxdy\\ &= \int_{x=0}^h\int_{y=0}^\infty\left(\sum_{n=1}^\infty a_n e^{2\pi i nx/h}e^{-2\pi ny/h}\right)y^{k-2}dxdy\\ &=\sum_{n=1}^\infty a_n \int_{x=0}^h e^{2\pi i nx/h} dx\int_{y=0}^\infty e^{-2\pi ny/h} y^{k-2}dy. \end{align*}\] Since \(n\geq 1\), the integrals on \(x\) vanish and thus we get the result.

We end the section by stating essentially that the Eisenstein series give a basis for \({\mathcal{E}}_k(\Gamma)\). We do this by giving the dimension of the Eisenstein space, and then exhibiting a the explicit basis.

Theorem 5.1 Let \(\Gamma\) be a congruence subgroup, let \(k\) be an integer, let \(\varepsilon_\Gamma\) be the number of cusps of \(\Gamma\) and let \(\varepsilon^\text{reg}_\Gamma\leq\varepsilon_\Gamma\) be the number of regular cusps. Then: \[\dim_{\mathbb{C}}{\mathcal{E}}_k(\Gamma)=\begin{cases} 0&\text{ if }k<0,\text{ or }k\text{ odd and }-I\in\Gamma,\\ 1&\text{ if }k=0,\\ \varepsilon_\Gamma^\text{reg}/2&\text{ if }k=1\text{ and } -I\not\in\Gamma,\\ \varepsilon_\Gamma-1&\text{ if }k=2,\\ \varepsilon_\Gamma&\text{ if }k\text{ even, and } k\geq 4,\\ \varepsilon_\Gamma^\text{reg}&\text{ if }k\text{ odd, }k\geq 3\text{, and } -I\not\in\Gamma.\\ \end{cases}\]

5.2 Eisenstein series for \(\Gamma_1(N)\)

We now specialize the above construction in the case where \(\Gamma=\Gamma_1(N)\) for any positive integer \(N\). In fact, we will construct a basis of Hecke eigenforms.

Recall that in Chapter 4 we introduced Dirichlet characters modulo \(N\). Let \(M\) and \(N\) be positive integers with \(M\mid N\). A Dirichlet character \(\chi\) modulo \(M\) can be lifted to a Dirichlet character \(\chi^{(N)}\) modulo \(N\), by \[\chi^{(N)}(m)=\begin{cases} \chi(m)&\text{ if }\gcd(m,N)=1,\\ 0&\text{ if }\gcd(m,N)>1. \end{cases}\]

Definition 5.2 Let \(\chi\colon {\mathbb{Z}}\longrightarrow{\mathbb{C}}\) be a Dirichlet character modulo \(N\). The of \(\chi\) is the smallest divisor \(M\) of \(N\) such that \(\chi\) is the lift of a Dirichlet character modulo \(M\). A Dirichlet character modulo \(N\) is if it has conductor \(N\).

Example 5.1 The only character modulo one is \(1\colon {\mathbb{Z}}\longrightarrow{\mathbb{C}}\), the constant function \(1\). If \(N\) is any positive integer, the lift of \(1\) to a Dirichlet character modulo \(N\) is the function \[1^{(N)}\colon{\mathbb{Z}}\longrightarrow{\mathbb{C}},\quad m\mapsto \begin{cases}1&\gcd(m,N)=1,\\0&\gcd(m,N)>1. \end{cases}\]

Example 5.2 For each prime number \(p\), and each integer \(a\) we define the \[\left(\frac a p\right)=\begin{cases} 0&\text{ if }p\mid a,\\ 1&\text{ if }p\mid a\text{ and $a$ is a square modulo $p$},\\ -1&\text{ if }p\mid a\text{ and $a$ is not a square modulo $p$},\\ \end{cases}\] Then \(\left(\frac\bullet p\right)\) is a Dirichlet character modulo \(p\). Its conductor is \(p\) if \(p\neq 2\), and \(1\) if \(p=2\).

Example 5.3 Let \(\chi_1\) be a Dirichlet character modulo \(N_1\) and let \(\chi_2\) be a Dirichlet character modulo \(N_2\). If \(M\) is a common multiple of \(N_1\) and \(N_2\), one may consider the product \(\chi=\chi_1\chi_2 = \chi_1^{(M)}\chi_2^{(M)}\). This is a character with modulus \(M\). Note however that the conductor is not multiplicative: if \(\chi\) is a quadratic character of conductor \(N\), say, then \(\chi^2\) is the trivial character which will have conductor \(1\).

In order to give the \(q\)-expansions of the Eisenstein series attached to a pair of characters, we need some new notation. We will need the folloing generalization of the divisor function. If \(\chi_1\) and \(\chi_2\) are Dirichlet characters, define \[\sigma_{k-1}^{\chi_1,\chi_2}(n)=\sum_{d\mid n}\chi_1(n/d)\chi_2(d)d^{k-1}.\] The following theorem gives the \(q\)-expansions of Eisenstein series that will form a basis of eigenforms for the Eisenstein space.

Theorem 5.2 Let \(\chi_1,\chi_2\) be primitive Dirichlet characters modulo \(N_1\) and \(N_2\), respectively. Let \(\chi=\chi_1\chi_2\) be the product as a character modulo \(N_1N_2\) (not necessarily primitive). Let \(k\geq 3\) be such that \(\chi(-1)=(-1)^k\). Define \[\delta(\chi_1)=\begin{cases} 1&\text{if } \chi_1=1_1,\\ 0&\text{else.} \end{cases}\] and let \(L(\chi_2,s)=\sum_{n=1}^\infty \chi_2(n)n^{-s}\) be the \(L\)-series of \(\chi_2\). Then the function \(E_k^{\chi_1,\chi_2}\) defined by \[E_k^{\chi_1,\chi_2}(z) = \delta(\chi_1)L(\chi_2,1-k) + 2\sum_{n=1}^\infty\sigma_{k-1}^{\chi_1,\chi_2}(n)q^n\] belongs to \({\mathcal{E}}_k(\Gamma_1(N_1N_2))\). Moreover, it is a Hecke eigenform with character \(\chi\).

The modular form \(E_k^{\chi_1,\chi_2}\) is called the Eisenstein series of weight \(k\) associated to \((\chi_1,\chi_2)\).

When \(k=1\) the theorem remains true, although in this case \(E_1^{\chi_1,\chi_2} = E_1^{\chi_2,\chi_1}\). When \(k=2\), then we must require in addition that \(\chi_1\) and \(\chi_2\) must not be both trivial. If both \(\chi_1\) and \(\chi_2\) are trivial, then we know that \(E_2(z)=1-24\sum_{n\geq 1} \sigma_1(n)q^n\) is not a modular form. However, for any \(N>1\) the function \[E_2^{(N)}(z)=E_2(z)-NE_2(Nz)\] belongs to \(M_2(\Gamma_1(N))\).

Theorem 5.3 Let \(k\geq 3\), let \(N\geq 1\) and let \(\chi\) be a Dirichlet character modulo \(N\) such that \(\chi(-1) = (-1)^k\). Then there is a decomposition \[{\mathcal{E}}_k(\Gamma_0(N),\chi) = \bigoplus_{d\mid N}\bigoplus_{N_1N_2 \mid\frac Nd} \bigoplus_{\chi_1\chi_2=\chi}{\mathbb{C}}V_d(E_k^{\chi_1,\chi_2}),\] where the inner sum runs through factorizations of \(\chi\) into primitive Dirichlet characters \(\chi_1\) and \(\chi_2\) modulo \(N_1\) and \(N_2\).